본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

주파수 특성과 역전파 신경망 알고리즘을 이용한 문자 영역 분할 방법
A method for Character Segmentation using Frequence Characteristics and Back Propagation Neural Network

전병태   (국립 한경대학교 웹정보공학과UU0001369  ); 송치양   (국립 상주대학교 소프트웨어공학과  );
  • 초록

    문자 영역 추출을 위해서 FFT와 신경망을 이용한 방법을 본 논문에서 제안하고자 한다. 일반적으로 문자 영역은 고주파 영역에서 발견되므로 FFT를 이용하여 이 특징을 추출할 수 있다. 문자(고 주파) 영역과 비 문자(저 주파) 영역을 신경망에 학습을 시킨다. 신경망에 고주파 영역을 입력으로써 후보 영역을 추출한다. 그리고 최종 문자 영역은 후보 영역 검증을 통하여 추출된다. 실험 결과 후보 영역 추출은 학습된 경우 100% 추출율을 보여주고 있으며, 검증을 통한 후보 영역 추출율은 95%임을 알 수 있었다. 제안된 알고리즘의 장점은 알고리즘의 단순성과 실시간 처리에 있다.


    The proposed method uses FFT(Fast Fourier Transform) and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT. The neural network are learned by character region(high frequency) and non character region(low frequency). The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 95% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image.


  • 주제어

    비디오 영상 .   문자 영역 추출.  

  • 이 논문을 인용한 문헌 (1)

    1. Won, Jong-Kil ; Kim, Hye-Young ; Cho, Jin-Soo 2011. "Text Area Extraction Method for Color Images Based on Labeling and Gradient Difference Method" 한국콘텐츠학회논문지 = The Journal of the Korea Contents Association, 11(12): 511~521     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기