본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of plant biology = 식물학회지 v.50 no.6, 2007년, pp.671 - 680  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Levans in Excised Leaves of Dactylis glomerata: Effects of Light, Sugars, Temperature and Senescence

Maleux, Katrien    (Laboratory of Molecular Plant Physiology, Belgium   ); Ende, Wim Van den    (Laboratory of Molecular Plant Physiology, Belgium  );
  • 초록

    Dactylis glomerata (orchardgrass) accumulates a single series of levans and the high DP polymers might be correlated with an increased stress resistance. A single levan series could be induced in excised orchardgrass leaves, without any 1-kestose accumulation, strongly suggesting that fructan synthesis occurs independently of 1-SST activity. This elegant excised leaf system was used to study fructan metabolism regulation as affected by environmental conditions and exogenous sugar treatments. In contrast to the well-studied barley excised leaf system, fructan biosynthesis could not be rapidly induced in the light without exogenous sugar and only a limited fructan synthesis was observed in the dark with sugar. It can be concluded that both light and sugar are needed to achieve an optimal fructan synthesis. To induce fructan biosynthesis, sucrose could be replaced by a combination of glucose and fructose. Fructans were found to be a surplus pool of sucrose when a threshold sucrose concentration is surpassed. A metabolic switch to fructan degradation was observed when induced orchardgrass leaves were incubated in the dark at $30^{\circ}C$ . Interestingly, fructans persisted during senescence of sugar-induced orchardgrass leaves. On the longer term, these fundamental regulatory insights might help to create superior grasses for future feed and/or biomass production.


  • 주제어

    Dactylis glomerata .   fructan .   levan .   orchardgrass .   regulation .   senescence.  

  • 참고문헌 (48)

    1. Bonnett GD, Sims IM, Simpson RJ, Cairns AJ (1997) Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol 136: 11-17 
    2. Miller LA, Moorby JM, Davis DR, Humphreys MO, Scollan ND, MacRae JC, Theodorou MK (2001) Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from late-lactation dairy cows. Grass Forage Sci 56: 383-394 
    3. Prud'homme MP, Morvan-Bertrand A, Lasseur B, Lothier J, Meuriot F, Decau ML, Noiraud-Romy N (2007) Lolium perenne, backbone of sustainable development, source of fructans for grazing animals and potential source of novel enzymes for biotechnology. In N Shiorni, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 231-258 
    4. Tilman A, Hill J, Lehman C (2006) Carbon-negative biofuels from low input high diversity grassland biomass. Science 314: 1598-1600 
    5. Van den Ende W, Van Laere A, Le Roy K, Vergauwen R, Boogaerts D, Figueiredo-Ribeiro RCL, Machado-de Carvalho MA (2005) Molecular cloning and characterization of a high DP fructan: fructan 1-fructosyl transferase from Viguiera discolor (Asteraceae) and its heterologous expression in Pichia pastoris. Physiol Pant 125:419-429 
    6. Van den Ende W, Clerens S, Vergauwen R, Boogaerts D, Le Roy K, Arckens L, Van Laere A (2006) Cloning and functional analysis of a high DP 1-FFT from Echinops ritro. Comparison of the native and recombinant enzymes. J Exp Bot 57: 775-789 
    7. Vergauwen R, Van den Ende W, Van Laere A (2000) The role of fructans in flowering of Campanula rapunculoides. J Exp Bot 51: 1261-1266 
    8. Vergauwen R, Van Laere A, Van den Ende W (2003) Properties of Fructan: Fructan 1-fructosyltransferase (1-FFT) from Cichorium intybus L. and Echinops ritro L., two Asteracean Plants Storing Greatly different types of inulin. Plant Physiol 133: 391-401 
    9. Wei JZ, Chatterton NJ, Harrison PA, Wang RRC, Larson SR (2002) Characterization of fructan biosynthesis in big bluegrass (Poa Secunda). J Plant Physiol 159: 705-715 
    10. Yamamoto S, Mino Y (1985) Partial purification and properties of phleinase induced in stem base of orchardgrass after defoliation. Plant Physiol 78: 591-595 
    11. Yoshida M, Kawakami A, Van den Ende W (2007). Graminan metabolism in cereals: wheat as a model system. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 201-212 
    12. Nagaraj VJ, Altenbach D, Galati V, Luscher M, Meyer AD, Boller T, Wiemken A (2004) Distinct regulation of sucrose: sucrose-1fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyl transferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol 161: 735-748 
    13. De Coninck B, Van den Ende W, Le Roy K (2007) Fructan ExoHydrolases in plants: Properties, Occurrence and 3-D structure. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 157-159 
    14. Isejima EM, Figueiredo-Ribeiro RCL (1993) Fructan variations in tuberous roots of Viguiera discolor Baker (Asteraceae): the influence of phenology. Plant Cell Physiol 34: 723-727 
    15. Lothier J, Lasseur B, Le Roy K, Van Laere A, Prud'homme MP, Barre P, Van den Ende W, Morvan-Bertrand A (2007) Cloning, gene mapping and functional analysis of a fructan 1-exohydrolase (l-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. J Exp Bot 58: 1969-1983 
    16. Cairns AJ, Nash R, Machado-Carvalho MA, Sims IM (1999) Characterization of the enzymatic polymerization of 2,6-linked fructan by leaf extracts from timothy grass (Phleum pratense). New Phytol 142: 79-91 
    17. Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotech J 5: 192-206 
    18. Muller J, Aeschbacher RA, Sprenger N, Boller T, Wiemken A (2000) Disaccharide-mediated regulation of sucrose:fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol 123: 265-74 
    19. Livingston DP III, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: Responses to second-phase cold hardening. Plant Physiol 116: 403-408 
    20. Parrott DL, Mclnnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176: 56-69 
    21. Frehner M, Keller F, Wiemken A (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Ieruzalem artichoke tubers (Helianthus tuberosus L.). J Plant Physiol 116: 197-208 
    22. Wagner W, Wiemken A, Matile P (1986) Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv. Gerbel). Plant Physiol 81: 444-447 
    23. Pollock C, Farrar J, Tomos D, Gallagher J, Lu C, Koroleva O (2003) Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. J Exp Bot 54: 489-494 
    24. Pourteau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect 'of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224: 556-568 
    25. Shiomi N, Benkeblia N, Shuichi O (2007) The metabolism of the fructooligosaccharides in asparagus (Asparagus officinalis L.) In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 213-230 
    26. Morcuende R, Kostadinova S, Perez P, del Molino IM, MartinezCarrasco R (2004) Nitrate is a negative signal for fructan synthesis, and the fructosyltransferase-inducing trehalose inhibits nitrogen and carbon assimilation in excised barley leaves. New Phytol 161: 749-759 
    27. Sanada Y, Takai T, Yamada T (2007) Ecotypic variation of water-soluble carbohydrate concentration and winter hardiness in orchardgrass (Dactylis glomerata L.). Euphitica 153: 267-280 
    28. Thorsteinsson B, Harrison PA, Chatterton NJ (2002) Fructan and total carbohydrate accumulation in leaves of two cultivars of timothy (Phleum pratense Vega and Climax) as affected by temperature. J Plant Physiol 159: 999-1003 
    29. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin J-F, Wu S-H, Swidzinski J Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42: 567-585 
    30. Geuns JMC, Cuypers AJF, Michiels T, Colpaert JY, Van Laere A, Van Den Broeck KAO, Vandecasteele CHA (1997) Mung bean seedlings as bio-indicators for soil and water contamination by cadmium. Sci Tot Env 203: 183-197 
    31. Pavis N, Boucaud J, Prud'homme MP (2001) Fructans and fructanmetabolizing enzymes in leaves of Lolium perenne. New Phytol 150: 97-109 
    32. Spollen WG, Nelson CJ (1988) Characterization of fructan from mature leaf blades and elongation zones of developing leaf blades of wheat, tall fescue and timothy. Plant Physiol 88: 1349-1353 
    33. Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell & Env 25: 803-815 
    34. Chatterton NJ, Harrison PA, Thornley WR, Bennett JH (1993) Structures of fructan oligomers in cocksfoot (Dactylis glomerata L.). J Plant Physiol 142: 552-556 
    35. Hendry GAF (1993) Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. New Phytol 123: 3-14 
    36. Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami A (2003a) Fructan 1-exohydrolases: $\beta$(2,1) trimmers during graminan biosynthesis in stems of wheat (Triticum aestivum L.)? Purification, characterization, mass mapping and cloning of two 1-FEH isoforms. Plant Physiol 131: 621-631 
    37. Volaire F, Lelievre F (1997) Production, persistence, and water-soluble carbohydrate accumulation in 21 contrasting populations of Dactylis glomerata L. subjected to severe drought in the south of France. Austr J Agric Res 48: 933-944 
    38. Yamamoto S, Amano S, Mino Y (1999) Carbohydrate metabolism in the stem base of timothy and orchardgrass in winter. Grassland Sci 44: 315-319 
    39. Van den Ende W, De Coninck B, Clerens S, Vergauwen R, Van Laere A (2003b) Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants. Characterization, cloning, mass mapping and functional analysis of a novel 'cell-wall invertase-like' specific 6-FEH from sugar beet (Beta vulgaris L.). Plant J 36: 697-710 
    40. Volaire F, Thomas H, Lelievre F (1998) Survival and recovery of perennial forage grasses under prolonged Mediterranean drought. I. Growth, death, water relations and solute content in herb-age and stubble. New Phytol 140: 439-449 
    41. Edelman J, Jefford T (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67: 517-531 
    42. Fujishima M, Sakai H, Ueno K, Takahashi N, Onodera S, Benkeblia N, Shiomi N (2005) Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis offructo-oligosaccharides in vivo. New Phytol 165: 513-524 
    43. Yamamoto S, Mino Y (1987) Effect of sugar level on phleinase induction in stem base of orchardgrass after defoliation. Phys Plant 69: 456-460 
    44. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938-942 
    45. Obenland DM, Simmen U, Boller T, Wiemken A (1991) Regulation of sucrose: sucrose fructosyltransferase in barley leaves. Plant Physiol 97: 811-813 
    46. Van den Ende W, Van Laere A (2007) Fructans in dicotyledonous plants: Occurrence and metabolism. In N Shiomi, N Benkeblia, S. Onodera, eds, Recent Advances in Fructo-oligoaccharides Research. ISBN: 81-308-0146-9. pp 1-14 
    47. Kingston-Smith AH, Walker RP, Pollock CJ (1999) Invertase in leaves: conundrum or control point? J Exp Bot 50: 735-743 
    48. Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332-336 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기