본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.12 no.4, 2007년, pp.424 - 432   피인용횟수: 1

Discovery of cSNPs in Pig Using Full-length Enriched cDNA Libraries of the Korean Native Pig as a Source of Genetic Diversity

Dirisala, Vijaya R.    (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University   ); Kim, Ju-Hyun    (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University   ); Park, Kwang-Ha    (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University   ); Lee, Hoon-Taek    (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University   ); Park, Chan-Kyu    (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University  );
  • 초록

    Clones from full-length enriched cDNA libraries serve as valuable resources for functional genomic studies. We analyzed 3,210 chromatograms obtained from sequencing the 5'-ends of brainstem, liver, neocortex, and spleen clones derived from full-length enriched cDNA libraries of Korean native pigs. In addition, 50,000 pig EST sequence trace files were obtained from Genbank and combined with our sequencing information for SNP identification in silica. For the SNP analysis, neocortex, and liver libraries were newly constructed, whereas the sequencing results from brainstem and spleen libraries were from previously constructed libraries. The putative SNPs from the in silica analysis were confirmed by genomic PCR from a group of 20 pigs of four different breeds. Using this approach, 86% of cSNPs identified in silico were confirmed and the SNP detection frequency was 1 SNP per 338 bp. Interestingly, we found a valine deletion at amino acid position 126 of the neuronal and endocrine protein gene in the Korean native pig. We confirmed that this deletion was caused by alternative splicing at the NAGNAG acceptors. Our study shows that large-scale EST sequencing of Korean native pigs can be effectively employed for natural polymorphism-based pig genome analysis.


  • 주제어

    SNP .   Korean native pig .   full-length cDNA libraries .   NAGNAG acceptor .   alternative splicing.  

  • 참고문헌 (44)

    1. Jeong, Y. S., H. J. Yoo, S. D. Kim, D. H. Nam, and Y. H. Khang (2005) Cloning and sequencing of a novel glutaryl acylase $\beta$-subunit gene of Pseudomonas cepacia BY21 from bioinformatics. Biotechnol. Bioprocess Eng. 10: 510-515???     
    2. Brookes, A. J. (1999) The essence of SNPs. Gene 234: 177-186 
    3. Komar, A. A. (2007) SNPs, silent but not invisible. Science 315: 466-467 
    4. Dimmic, M. W., S. R. Sunyaev, and C. Bustamante (2005) Inferring SNP function using evolutionary, structural and computational methods. Pac. Symp. Biocomput. 10: 382-384 
    5. Dirisala, V. R., J. Kim, K. Park, N. Kim, K. T. Lee, S. J. Oh, J. H. Oh, N. S. Kim, S. J. Um, H. T. Lee, K. I. Kim, and C. Park (2005) cSNP mining from full-length enriched cDNA libraries of the Korean native pig. Kor. J. Genet. 27: 329-335 
    6. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410 
    7. Hiller, M., K. Huse, K. Szafranski, N. Jahn, J. Hampe, S. Schreiber, R. Backofen, and M. Platzer (2004) Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat. Genet. 36: 1255-1257 
    8. Wang, D. G., J. B. Fan, C. J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M. S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T. J. Hudson, R. Lipshutz, M. Chee, and E. S. Lander (1998) Large-scale identification, mapping, genotyping of single nucleotide polymorphisms in the human genome. Science 280: 1077-1082 
    9. Maniatis, T. and B. Tasic (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418: 236-243 
    10. Hiller, M., K. Szafranski, R. Backofen, and M. Platzer (2006) Alternative splicing at NAGNAG acceptors: simply noise or noise and more? PLoS Genet. 2: e207 
    11. Grapes, L., S. Rudd, R. L. Fernando, K. Megy, D. Rocha, and M. F. Rothschild (2006) Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold? J. Anim. Breed. Genet. 123: 145- 151 
    12. Fujisaki, S., A. Sugiyama, T. Eguchi, Y. Watanabe, H. Hiraiwa, D. Honma, T. Saito, and H. Yasue (2004) Analysis of a full-length cDNA library constructed from swine olfactory bulb for elucidation of expressed genes and their transcription initiation sites. J. Vet. Med. Sci. 66: 15-23 
    13. Ewing, B. and P. Green (1998) Base-calling of automated sequencing tracers using phred. II. Error probabilities. Genome Res. 8: 186-194 
    14. Kim, H., C. J. Schmidt, K. S. Decker, and M. G. Emara (2003) A double-screening method to identify reliable candidate non-synonymous SNPs from chicken EST data. Anim. Genet. 34: 249-254 
    15. Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA 
    16. Won, J. I. (2006) Recent advances in DNA sequencing by end-labeled free-solution electrophoresis (ELFSE). Biotechnol. Bioprocess Eng. 11: 179-186     
    17. Ewing, B., L. Hillier, M. C. Wendl, and P. Green (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185 
    18. Fitzsimmons, C. J., P. Savolainen, B. Amini, G. Hjalm, J. Lundeberg, and L. Andersson (2004) Detection of sequence polymorphisms in red junglefowl and White Leghorn ESTs. Anim. Genet. 35: 391-396 
    19. Gu, Z., L. Hillier, and P. Y. Kwok (1998) Single nucleotide polymorphism hunting in cyberspace. Hum. Mutat. 12: 221-225 
    20. Kumar, S., K. Tamura, and M. Nei (2004) MEGA3: Integrated software for Molecular Evolutionary Genetic Analysis and sequence alignment. Brief. Bioinform. 5: 150-163 
    21. Hiller, M., K. Huse, K. Szafranski, N. Jahn, J. Hampe, S. Schreiber, R. Backofen, and M. Platzer (2006) Singlenucleotide polymorphisms in NAGNAG acceptors are highly predictive for variations of alternative splicing. Am. J. Hum. Genet. 78: 291-302 
    22. Garg, K., P. Green, and D. A. Nickerson (1999) Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res. 9: 1087-1092 
    23. Buetow, K. H., M. N. Edmonson, and A. B. Cassidy (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat. Genet. 21: 323- 325 
    24. Picoult-Newberg, L., T. E. Ideker, M. G. Pohl, S. L. Taylor, M. A. Donaldson, D. A. Nickerson, and M. Boyce-Jacino (1999) Mining SNPs from EST databases. Genome Res. 9: 167-1743 
    25. Chen, C. H., E. C. Lin, W. T. K. Cheng, H. S. Sun, H. J. Mersmann, and S. T. Ding (2006) Abundantly expressed genes in pig adipose tissue: an expressed sequence tag approach. J. Anim. Sci. 84: 2673-2683 
    26. The International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928-933 
    27. Guryev, V., E. Berezikov, R. Malik, R. H. A. Plasterk, and E. Cuppen (2004) Single nucleotide polymorphisms associated with rat expressed sequences. Genome Res. 14: 1438-1443 
    28. Lee, M. A., O. M. Keane, B. C. Glass, T. R. Manley, N. G. Cullen, K. G. Dodds, A. F. McCulloh, C. A. Morris, M. Schreiber, J. Warren, A. Zadissa, T. Wilson, and J. C. McEwan (2006) Establishment of a pipeline to analyse non-synonymous SNPs in Bos taurus. BMC Genomics 7: 298 
    29. Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park, and J. W. Lee (2005) Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83: 2255-2263 
    30. Barker, G., J. Batley, H. O. Sullivan, K. J. Edwards, and D. Edwards (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19: 421-422 
    31. Uenishi, H., T. Eguchi, K. Suzuki, T. Sawazaki, D. Toki, H. Shinkai, N. Okumura, N. Hamasima, and T. Awata (2004) PEDE (Pig EST Data Explorer): construction of a database for ESTs derived from porcine full-length cDNA libraries. Nucleic Acids Res. 32: 484-488 
    32. Uenishi, H., T. Eguchi-Ogawa, H. Shinkai, N. Okumura, K. Suzuki, D. Toki, N. Hamasima, and T. Awata (2007) PEDE (Pig EST Data Explorer) has been expanded into Pig Expression Data Explorer, including 10147 porcine full-length cDNA sequences. Nucleic Acids Res. 35: D650-D653 
    33. Gordon, D., C. Abajian, and P. Green (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8: 195-202 
    34. Porter, V. (1993) Pigs, A Handbook to the Breeds of the World. Helm Information Ltd., UK 
    35. Cooper, D. N. and M. Krawczak (1993) Human Gene Mutation. Bios Scientific Publishers, Oxfordshire, UK 
    36. Hong, S. J. and C. G. Lee (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol. Bioprocess Eng. 12: 165-173     
    37. Useche, F. J., G. Gao, M. Hanafey, and A. Rafalski (2001) High-throughput identification, database storage and analysis of SNPs in EST sequences. Genome Inform. Ser. 12: 194-203 
    38. Mbikay, M., N. G. Seidah, and M. Chretien (2001) Neuroendocrine secretory protein 7 B2: structure, expression and functions. Biochem. J. 357: 329-342 
    39. Hawken, R. J., W. C. Barris, S. M. McWilliam, and B. P. Dalrymple (2004) An interactive bovine in silico SNP database (IBISS). Mamm. Genome 15: 819-827 
    40. Kim, T. H., N. S. Kim, D. Lim, K. T. Lee, J. H. Oh, H. S. Park, G. W. Jang, H. Y. Kim, M. Jeon, B. H. Choi, H. Y. Lee, H. Y. Chung, and H. Kim (2006) Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue. BMC Genomics 7: 36 
    41. Hiller, M., S. Nikolajewa, K. Huse, K. Szafranski, P. Rosenstiel, S. Schuster, R. Backofen, and M. Platzer (2006) TassDB: a database of alternative tandem splice sites. Nucleic Acids Res. 35: D188-D192 
    42. Lee, S. H., E. W. Park, Y. M. Cho, J. W. Lee, H. Y. Kim, J. H. Lee, S. J. Oh, I. C. Cheong, and D. H. Yoon (2006) Confirming single nucleotide polymorphisms from expressed sequence tag datasets derived from three cattle cDNA libraries. J. Biochem. Mol. Biol. 39: 183-188 
    43. Fahrenkrug, S. C., B. A. Freking, T. P. L. Smith, G. A. Rohrer, and J. W. Keele (2002) Single nucleotide polymorphism (SNP) discovery in porcine expressed genes. Anim. Genet. 33: 186-195 
    44. Kollers, S., K. Megy, and D. Rocha (2005) Analysis of public single nucleotide polymorphisms in commercial pig populations. Anim. Genet. 36: 426-431 
  • 이 논문을 인용한 문헌 (1)

    1. 2009. "" Genomics & informatics, 7(2): 65~84     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기