본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The journal of microbiology v.45 no.4, 2007년, pp.326 - 332   피인용횟수: 2

The Physiological Role of CPR1 in Saccharomyces cerevisiae KNU5377 against Menadione Stress by Proteomics

Kim, Il-Sup    (Department of Biology, Kyungpook National University   ); Yun, Hae-Sun    (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health   ); Kwak, Sun-Hye    (Department of Microbiology, Kyungpook National University   ); Jin, Ing-Nyol    (Department of Microbiology, Kyungpook National University  );
  • 초록

    In order to understand the functional role of CPRl in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wild- type strain of KNU5377. Among the proteins, Sodl1p Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the $cpr1{\Delta}$ mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the $cpr1{\Delta}$ mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.


  • 주제어

    CPR1 .   oxidative stress .   Saccharomyces cerevisiae KNU5377 .   proteome.  

  • 참고문헌 (26)

    1. Ansari, H., G. Greco, and J. Luban. 2002. Cyclophilin A peptidylprolyl isomerase activity promotes Zpr1 nuclear export. Mol. Cell. Biol. 22, 6993-7003 
    2. Arevalo-Rodriguez, M., X. Wu, S.D. Hanes, and J. Heitman. 2004. Prolyl isomerase in yeast. Front. Biosci. 9, 2420-2446 
    3. Bona, E., F. Marsano, M. Cavaletto, and G. Berta. 2007. Proteomic characterization of copper stress response in Canabis sativa roots. Proteomics 7, 1121-1130 
    4. Cardenas, M.E., E. Lim, and J. Heitman. 1995. Mutations that perturb cyclophilin A ligand binding pocket confer cyclosporin A resistance in Saccharromyces cerevisiae. J. Biol. Chem. 270, 20997-21002 
    5. Davidson, J.F., B. Whyte, P.H. Bissinger, and R.H. Schiestl. 1996. Oxidative stress in involved in heat cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 5116-5121 
    6. Dijck, P.V. and G.W. Walker. 2006. Physiological and molecular responses of yeasts to the environment, p. 111-152. In A. Querol and G.H. Fleet. (eds.), Yeasts in food and beverages, Springer Verlag, New York, USA 
    7. Galat, A. and S.M. Metcalfe. 1995. Peptidyl proline cis/trans isomerase. Prog. Biophys. Mol. Biol. 63, 67-118 
    8. Kim, I.S., H.S. Yun, I.S. Park, H.Y. Sohn, H. Iwahashi, and I.N. Jin. 2006. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102, 288-296 
    9. Piper, P.W., B. Curran, M.W. Davies, A. Lockheart, and G. Reid. 1986. Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock. Eur. J. Biochem. 161, 525-531 
    10. Rouhier, N. and J.P. Jacquot. 2005. The plant multigenic family of thiol peroxidase. Free Rad. Biol. Med. 38, 1413-1421 
    11. Wang, P. and J. Heitman. 2005. The cyclophilins. Genome Biol. 6, 226.1-226.6 
    12. Tucker, C.L. and S. Fields. 2004. Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genom. 5, 216-224 
    13. Moskvina, E., C. Schuller, C.T. Maurer, W.H. Mager, and H. Ruis. 1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041-1050 
    14. Zanei, C.F., A.L. Maragno, A.P. Gregio, S. Komili, J.R. Pandolfi, C.A. Mestriner, W.R. Lustri, and S.R. Valentini. 2006. eIF5A binds to translational machinery components and affects translation in yeast. Biochem. Biophys. Res. Commun. 348, 1358-1366 
    15. Lushchak, V.I. and D.V. Gospodaryov. 2005. Catalase protects cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell. Biol. Int. 29, 187-192 
    16. George, R., T. Beddoe, K. Landl, and T. Lithgow. 1998. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 95, 2296-2301 
    17. Arevalo-Rodriguez, M., M.E. Cardenas, X. Wu, S.D. Hanes, and J. Heitman. 2000. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 hitone deacetlyase. EMBO J. 19, 3739-3749 
    18. Arevalo-Rodriguez, M. and J. Heitman. 2005. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryotic Cell 4, 17-29 
    19. Sykes, K., M. Gething, and J. Sambrook. 1993. Proline isomerases function during heat shock. Proc. Natl. Acad. Sci. USA 90, 5853-5857 
    20. Reimann, B., J. Bradsher, J. Franke, F. Hartmann, M. Wiedmann, S. Prehn, and B. Wiedmann. 1999. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397-407 
    21. Delgado, M.L., J.E. O'Connor, I. Azorin, J. Renau-Piqueras, M.L. Gil, and D. AGozallo. 2001. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147, 411-417 
    22. Christian, G., L. Gilles, L. Jaekwon, J.M. Buhler, K. Sylvie, P. Michel, B. Helian, B.T. Michael, and L. Jean. 1998. The $H_2O_2$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 
    23. Lee, J., C. Godon, G. Langiel, D. Spector, J. Garin, J. Labarre, and M.B. Toledano. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046 
    24. de Olivaria, I.M., J.A. Henriques, and D. Bonatto. 2007. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem. Biophys. Res. Commun. 355, 919-925 
    25. Estrruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469-486 
    26. Brown, C.R., D.Y. Cui, G.G.C. Hung, and H.L. Chiang. 2001. Cyclophilin A mediates Vid22p function in the import of fructose- 1,6-biphosphatase into vid vesicles. J. Biol. Chem. 276, 48017-48026 
  • 이 논문을 인용한 문헌 (2)

    1. 2009. "" Biotechnology and bioprocess engineering, 14(2): 232~237     
    2. 2011. "" The journal of microbiology, 49(5): 816~823     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기