본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

결핵균 튜베르쿨린 PPD 및 38-kDa 항원에 의한 사람 말초혈액 단핵구의 전염증성 사이토카인 생성에 대한 Toll-like Receptor 의존도 비교 분석
Differential Roles of Toll-like Receptor (TLR) 2 and 4 between PPD- and 38-kDa-induced Proinflammatory Cytokine Productions in Human Monocytes

정샛별    (충남대학교 의과대학 미생물학교실   ); 이지숙    (건양대학교 의과대학 미생물학교실   ); 양철수    (충남대학교 의과대학 미생물학교실   ); 송창화    (충남대학교 의과대학 미생물학교실   ); 이길수    (충남대학교 의과대학 미생물학교실   ); 김화중    (충남대학교 의과대학 미생물학교실   ); 박정규    (충남대학교 의과대학 미생물학교실   ); 백태현    (건양대학교 의과대학 미생물학교실   ); 조은경    (충남대학교 의과대학 미생물학교실  );
  • 초록

    In this study, we investigated the role of toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) pathways involved in the tumor necrosis factor (TNF)- ${\alpha}$ and interleukin (IL)-6 expression after stimulation with purified protein derivatives (PPD) or native 38-kDa protein antigen (Ag) of Mycobacterium tuberculosis H37Rv in human primary monocytes. Both PPD and 38-kDa Ag significantly induced TNF- ${\alpha}$ and IL-6 in human primary monocytes. MAPK [extracellular signal-regulated kinase (ERK) 1/2 and p38] are rapidly phosphorylated in human monocytes stimulated with the PPD or 38-kDa Ag. Both p38 and ERK 1/2 activation are essential for PPD- or 38-kDa-induced TNF- ${\alpha}$ and IL-6 production. The inhibition of TLR2 and TLR4 by specific antibodies significantly abrogated the 38-kDa-induced secretion of TNF- ${\alpha}$ and IL-6, whereas blockade of TLR2, but not TLR4, was responsible for the PPD-induced TNF- ${\alpha}$ and IL-6 production in human monocytes. Collectively, these data suggest that the PPD and 38-kDa Ag differentially interact with TLR2 and TLR4, which in turn mediate an essential role for the early inflammatory immune responses during human tuberculosis.


  • 주제어

    PPD antigen .   38-kDa antigen .   Monocyte .   TNF- ${\alpha}$ .   IL-6 .   MAPK .   Mycobacterium tuberculosis.  

  • 참고문헌 (38)

    1. Andersen P: Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 62: 2536-2544, 1994 
    2. Blumenthal A, Ehlers S, Ernst M, Flad HD, Reiling N: Control of mycobacterial replication in human macrophages: roles of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways. Infect Immun 70: 4961-4967, 2002 
    3. Bothamley GH, Beck JS, Potts RC, Grange JM, Kardjito T, Ivanyi J: Specificity of antibodies and tuberculin response after occupational exposure to tuberculosis. J Infect Dis 166: 182-186, 1992 
    4. Brightbill HD, Libraty DH, Krutzik SR, Yang R-B, Belisle JT, Bleharski JR, Maitland M, Norgard MY, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL: Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285: 732-736, 1999 
    5. Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M: Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280: 20961-20967, 2005 
    6. Gilleron M, Quesniaux VF, Puzo G: Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem 278: 29880-29889, 2003 
    7. Lee JS, Son JW, Jung SB, Kwon YM, Yang CS, Oh JH, Song CH, Kim HJ, Park JK, Paik TH, Jo EK: Ex vivo responses for interferon-gamma and proinflammatory cytokine secretion to low-molecular-weight antigen MTB12 of Mycobacterium tuberculosis during human tuberculosis. Scand J Immunol 64: 145-154, 2006 
    8. Means TK, Wang S, Lien E, Yoshimura A, Golenbock D, Fenton M: Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163: 3920-3927, 1999 
    9. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in T1r4 gene. Science 282: 2085-2088, 1998 
    10. Weir RE, Black GF, Dockrell HM, Floyd S, Fine PE, Chaguluka SD, Stenson S, King E, Nazareth B, Warndorff DK, Ngwira B, Crampin AC, Mwaungulu L, Sichali L, Jarman E, Donovan L, Blackwell JM: Mycobacterial purified protein derivatives stimulate innate immunity: Malawians show enhanced tumor necrosis factor alpha, interleukin-Ibeta (IL-1beta), and IL-10 responses compared to those of adolescents in the United Kingdom. Infect Immun 72: 1807-1811, 2004 
    11. Yang CS, Lee JS, Song CH, Hur GM, Lee SJ, Tanaka S, Akira S, Paik TH, Jo EK: Protein kinase C zeta plays an essential role for Mycobacterium tuberculosis-induced extra-cellular signal-regulated kinase 1/2 activation in monocytes/macrophages via Toll-like receptor 2. Cell Microbiol 9: 382-396, 2007 
    12. Janssens S, Beyaert R: Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 16: 637-646, 2003 
    13. Song CH, Lee JS, Lee SH, Lim K, Kim HJ, Park JK, Paik TH, Jo EK: Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J Clin Immunol 23: 194-201, 2003 
    14. Lopez M, Sly LM, Luu Y, Young D, Cooper H, Reiner NE: The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J Immunol 170: 2409-2416, 2003 
    15. Collins HL, Kaufmann SH: The many faces of host responses to tuberculosis. Immunology 103: 1-9, 2001 
    16. Means TK, Golenbock DT, Fenton MJ: The biology of Toll-like receptors. Cytokine Growth Factor Rev 11: 219-232, 2000 
    17. Jones BW, Heldwein KA, Means TK, Saukkonen JJ, Fenton MJ: Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis 60 Suppl 3: iii6-12, 2001 
    18. Andersen P: The T cell response to secreted antigens of Mycobacterium tuberculosis. Immunobiology 191: 537-547, 1994 
    19. Harboe M, Wiker GH: The 38 kDa protein of Mycobacterium tuberculosis: a review. J Infect Dis 166: 874-884, 1992 
    20. Jung SB, Yang CS, Lee JS, Shin AR, Jung SS, Son JW, Harding CV, Kim HJ, Park JK, Paik TH, Song CH, Jo EK: The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect Immun 74: 2686-2696, 2006 
    21. Denkers EY, Butcher BA, Del Rio L, Kim L: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signaling cascades during intracellular Toxoplasma gondii infection. Immunol Rev 201: 191-205, 2004 
    22. Underhill D, Ozinsky A, Smith K, Aderem A: Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96: 14459-14463, 1999 
    23. Chang Z, Choudhary A, Lathigra R, Quiocho FA: The immunodominant 38-kDa lipoprotein antigen of Mycobacterium tuberculosis is a phosphate-binding protein. J Biol Chem 269: 1956-1958, 1994 
    24. Garcia I, Miyazaki Y, Marchal G, Lesslauer W, Vassalli P: High sensitivity of transgenic mice expressing soluble TNFR1 fusion protein to mycobacterial infections: synergistic action of $TNF-\alpha$ and IFN-gamma in the differentiation of protective granulomas. Eur J Immunol 27: 3182-3190, 1997 
    25. Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, Qureshi N, Michalek SM, Vogel SN: Signaling by TLR2 versus TLR4 agonists results in differential gene expression in murine macrophages. Infect Immun 69: 1477-1482, 2001 
    26. Tracey KJ, Cerami A: Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45: 491-503, 1994 
    27. Quesniaux VJ, Nicolle DM, Torres D, Kremer L, Guerardel Y, Nigou J, Puzo G, Erard F, Ryffel B: Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol 172: 4425-4434, 2004 
    28. Johnson GL, Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912, 2002 
    29. Keane J, Gershon S, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM: Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345: 1098-1104, 2001 
    30. Lee JS, Song CH, Lim JH, Kim HJ, Park JK, Paik TH, Kim CH, Kong SJ, Shon MH, Jung SS, Jo EK: The production of tumour necrosis factor-alpha is decreased in peripheral blood mononuclear cells from multidrug-resistant tuberculosis patients following stimulation with the 30-kDa antigen of Mycobacterium tuberculosis. Clin Exp Immunol 132: 443-449, 2003 
    31. Fonseca DP, Benaissa-Trouw B, van Engelen M, Kraaijeveld CA, Snippe H, Verheul AF: Induction of cell-mediated immunity against Mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein. Infect Immun 69: 4839-4845, 2001 
    32. 이지숙, 백태현, 유영춘, 이정림, 신아름, 송창화, 조은경, 김화중, 박정규: 결핵균 배양여과액으로부터 Ag85 Complex, 38-kDa 및 MTB12 항원의 분리 정제. J Bact Virol 36: 211-221, 2006     
    33. Jo EK, Park JK, Dockrell HM: Dynamics of cytokine generation in patients with active pulmonary tuberculosis. Curr Opin Infect Dis 16: 205-210, 2003 
    34. Zhu X, Venkataprasad N, Thangaraj HS, Hill M, Singh M, Ivanyi J, Vordermeier HM: Functions and specificity of T cells following nucleic acid vaccination of mice against Mycobacterium tuberculosis infection. J Immunol 158: 5921-5926, 1997 
    35. Rao K: MAP kinase activation in macrophages. J Leukoc Biol 69: 3-10, 2001 
    36. Harboe M: The significance of proteins actively secreted by Mycobacterium tuberculosis in relation to immunity and complications of mycobacterial diseases. Int J Lepr Other Mycobact Dis 60: 470-476, 1992 
    37. 백태현, 권혜숙, 이선, 이지숙, 조은경, 김화중, 이미리나, 유영춘, 박정규: 결핵균의 TSP 균체항원으로부터 특이항원의 분리 및 특성 분석. J Bact Virol 34: 273-282, 2004     
    38. Dong C, Davis RJ, Flavell RA: MAP kinases in the immune response. Annu Rev Immunol 20: 55-72, 2002 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기