본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL ASYMPTOTIC STABILITY FOR A FOURTH-ORDER RATIONAL DIFFERENCE EQUATION

Li, Xianyi   (SCHOOL OF MATHEMATICS AND PHYSICS NANHUA UNIVERSITYUU0016374  ); Agarwal, Ravi P.   (DEPARTMENT OF MATHEMATICAL SCIENCES FLORIDA INSTITUTE OF TECHNOLOGY  );
  • 초록

    In this paper, the following fourth-order rational difference equation $$x_{n+1}=\frac{{x_n^b}+x_n-2x_{n-3}^b+a}{{x_n^bx_{n-2}+x_{n-3}^b+a}$$ , n=0, 1, 2,..., where a, b ${\in}$ [0, ${\infty}$ ) and the initial values $X_{-3},\;X_{-2},\;X_{-1},\;X_0\;{\in}\;(0,\;{\infty})$ , is considered and the rule of its trajectory structure is described clearly out. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is $1^+,\;1^-,\;1^+,\;4^-,\;3^+,\;1^-,\;2^+,\;2^-$ in a period, by which the positive equilibrium point of the equation is verified to be globally asymptotically stable.


  • 주제어

    rational difference equation .   semicycle .   cycle length .   global asymptotic stability.  

  • 참고문헌 (12)

    1. R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992(1st edition), 2000 (2nd edition) 
    2. A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, On the recursive sequence $x_{n+1}\;=\;{\alpha}\;+\;x{n-1}/x_n$, J. Math. Anal. Appl. 233 (1999), no. 2, 790-798 
    3. C. Gibbons, M. R. S. Kulenovic, and G. Ladas, On the recursive sequence $x_{n+1}\;=\;(<\alpha}\;+{\beta}x_{n-1})/({\gamma}\;+\;x_n)$, Math. Sci. Res. Hot-Line 4 (2000), no. 2, 1-11 
    4. S. Kalabusic and M. R. S. Kulenovic, Rate of convergence of solutions of rational difference equation of second order, Adv. Difference Equ. (2004), no. 2, 121-139 
    5. V. L. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993 
    6. M. R. S. Kulenovic, G. Ladas, L. F. Martins, and I. W. Rodrigues, The Dynamics of $x_{n+1}\;=\;\frac{{\alpha}={\beta}x_n}{A+Bx_n+Cx_{n-1}}$ : Facts and Conjectures, Computers Math. Appl. 45 (2003), no. 6-9, 1087-1099 
    7. M. R. S. Kulenovic, G. Ladas, and N. R. Prokup, A rational difference equation, Computers Math. Appl. 41 (2001), no. 5-6, 671-678 
    8. X. Li and D. Zhu, Global asymptotic stability of a nonlinear recursive sequence, Appl. Math. Lett. 17 (2004), no. 7, 833-838 
    9. X. Li and D. Zhu, Global asymptotic stability in a rational equation, J. Differ. Equations Appl. 9 (2003), no. 9, 833-839 
    10. Tim Nesemann, Positive nonlinear difference equations: some results and applications, Nonlinear Analysis 47 (2001), no. 7, 4707-4717 
    11. A. M. Amleh, N. Kruse, and G. Ladas, On a class of difference equations with strong negative feedback, J. Differ. Equations Appl. 5 (1999), no. 6, 497-515 
    12. X. Li and D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput. 150 (2004), no. 2, 481-492 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기