본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

PREDICTION OF DAILY MAXIMUM X-RAY FLUX USING MULTILINEAR REGRESSION AND AUTOREGRESSIVE TIME-SERIES METHODS

Lee, J.Y.   (Department of Astronomy and Space Science, Kyung Hee UniversityUU0001575  ); Moon, Y.J.   (Department of Astronomy and Space Science, Kyung Hee UniversityUU0001575  ); Kim, K.S.   (Department of Astronomy and Space Science, Kyung Hee UniversityUU0001575  ); Park, Y.D.   (Korea Astronomy and Space Science InstituteCC0186834  ); Fletcher, A.B.   (Korea Astronomy and Space Science InstituteCC0186834  );
  • 초록

    Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a $2{\times}2$ contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' $X^2$ statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.


  • 주제어

    Sun: solar activity .   Sun: X-ray flares .   Sun: flare prediction .   Sun: statistical method.  

  • 참고문헌 (24)

    1. Barnes G. and Leka K.D. 2006, 'Photospheric magnetic field properties of flaring versus flare-quiet active regions. III. Magnetic charge topology models, ApJ, 646, 1303-1318 
    2. Bartkowiak, A. and Jakimiec, M. 1986, 'Short-term flare activity predictions by means of regression functions calculated for various Zurich class groups observed over the period 1977-1979', P. A. Simon, G. Heckman, M. A. Shea (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions II', Meudon, France, 18-22 June 1984, 285-293 
    3. Bartkowiak, A. and Jakimiec, M.: 1990a, 'Short-term predictions of flare activity using alpha-trimmed regression method', Acta Astron. 40, 169-181 
    4. Bartkowiak, A. and Jakimiec, M.: 1990b, 'Robust regression with Huber's weights in predictions of flare activity', Acta Astron. 40, 379-388 
    5. Bornmann, P. L. and Shaw, D.: 1994, 'Flare rates and the McIntosh active-region classifications', Sol. Phys., 150, 127-146 
    6. Bornmann, P. L., Kalmbach, D., and Kulhanek, D.: 1994, 'McIntosh active-region class similarities and suggestions for mergers', Sol. Phys., 150, 147-164 
    7. Georgoulis, Manolis K. and David M. Rust, 2007, 'Quantitative forecasting of major solar flare', ApJ, 661, 109-112 
    8. Hudson, H. S., Haisch, B. M., and Strong, K. T. 1995, 'Comment on 'The solar flare myth' by J. T. Gosling', J. Geophys. Res. 100(A3), 3473-3477 
    9. Jakimiec, M. and Bartkowiak, A. 1986, 'Relationships among characteristics describing solar active regions', P. A. Simon, G. Heckman, M. A. Shea (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions II', Meudon, France, 18-22 June 1984, 294-299 
    10. Jakimiec, M. 1993, 'Two-step regression model used for short-term flare activity prediction', in J. Hruska, M. A. Shea, D. F. Smart, and G. R. Heckman (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions IV', Ottawa, Canada, 22-29 May 1992, v. 2, 180 
    11. Jakimiec, M. and Bartkowiak, A. 1994, 'Short-term solar flare predictions by distance-based regression I. Bearalert Regions in 1988 and 1989 - continuous predictors', Acta Astron., 44, 115-140 
    12. Kahler, S. W., Sheeley, N. R., Jr., Howard, R. A., Michels, D. J., Koomen, M. J., McGuire, R. E., von Rosenvinge, T. T., and Reames, D. V. 1984, 'Associations between coronal mass ejections and solar energetic proton events', J. Geophys. Res., 89, 9683-9693 
    13. Langley, R. 1971, Practical Statistics Simply Explained, revised ed., Dover Publ., Inc., New York, p. 285 
    14. Lee, J. and Kim, K.-S. 1996, 'The prediction of flare production using solar activity data', Publications of Korean Astronomical Society, 11(1), 263-277 
    15. Lee, J., Jang, S.-J., Kim, Y.-H., and Kim, K.-S. 1999, 'The prediction of solar activity for solar maximum', Publications of Korean Astronomical Society, 14(2), 103-112 
    16. McIntosh, P. S. 1990, 'The classification of sunspot groups', Sol. Phys., 125, 251-267 
    17. Moon, Y.-J., Choe, G. S., Yun, H. S., and Park, Y. D. 2001, 'Flaring time interval distribution and spatial correlation of major X-ray solar flares', J. Geophys. Res., 106(A12), 29951-29962 
    18. Neidig, D. F., Wiborg, P. H., Seagraves, P. H., Hirman, J. W., and Flowers, W. E. 1986, 'Objective forecasts for solar flares using multivariate discriminant analysis', P. A. Simon, G. Heckman, M. A. Shea (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions II', Meudon, France, 18-22 June 1984, 300-305 
    19. Wheatland M.S. 2004, 'A bayesian approach to solar flare prediction', ApJ, 609, 1134-1139 
    20. Wilson, R. M. 1994, 'A comment on the suspected solar neutrino-solar activity connection', Sol. Phys., 149, 391-394 
    21. Wheatland M.S. 2000, 'The origin of the solar flare waiting-time distribution', ApJ, 536, 109-112 
    22. Gallagher, P. T., Moon, Y.-J., and Wang, H.: 2002, 'Active region monitoring and flare forecasting', Sol. Phys., 209, 171-183 
    23. Schrijver Carolus J. 2007, 'A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting, ApJ, 655, 117-120 
    24. Kahler, S. W. 1992, 'Solar flares and coronal mass ejections', ARA&A, 30, 113-141 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기