본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

Yoon, Min-Ho   (Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Chungnam National UniversityUU0001302  ); Nam, Yun-Kyu   (Department of Bioenvironment, Agricultural Research & Extension Services of Chungcheongnam-Do Province  ); Choi, Woo-Young   (Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Chungnam National UniversityUU0001302  ); Sung, Nack-Do   (Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Chungnam National UniversityUU0001302  );
  • 초록

    A ${\beta}$ -glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ( $K_m$ and $V_{max}$ ) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$ -glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ( $H_3O^+$ ), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ( $SH^+$ ) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

  • 주제어

    Cellulolytic reactivity .   Cellulomonas uda CS1-1 .   ${\beta}$-glucosidase .   pNP- ${\beta}$-cellooligosaccharides .   MO theory.  

  • 참고문헌 (31)

    1. Accelrys. 2000. TSAR: Proprietary software (Ver. 3.3), User Guide, OxfordMolecular: Solutions for Discovery Research. Oxford Molecular Ltd 
    2. Chen, H. G., X. Yan, X. Y. Liu, M. D. Wang, H. M. Huang, X. C. Jia, and J. A. Wang. 2006. Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J. Microbiol. Biotechnol. 16: 1132-1138     
    3. Cornish-Bowden, A. 1995. Fundamentals of Enzyme Kinetics, pp. 343-348. Revised Edition. Portland Press 
    4. Fleming, I. 1976. Frontier Orbitals and Organic Chemical Reactions, pp. 34-85. John Wiely & Sons, London 
    5. Hansch, C. and K. N. von Kaulla. 1970. Fibrinolytic congeners of benzoic acid and salicylic acid: A mathematical analysis of correlation between structure and activity. Biochem. Pharmacol. 19: 2193-2200 
    6. Hansch, C. and K. N. von Kaulla. 1975. Synthetic Fibrinolytic Thrombix Agents, Chemical, Biochemical, Pharmocological and Clinical Aspects, pp. 227-279. Charles, C. Thomas, Springerfield, III 
    7. Hoh, Y. K., H. H. Yeoh, and T. K. Tan. 1992. Properties of $\beta$-glucosidase purified from Aspergillus niger mutant USDB0827 and USDB0820. Appl. Microbiol. Biotechnol. 37: 590-593 
    8. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 
    9. Porter, W. R. and W. F. Trager. 1977. Improved nonparametric statistical methods for the estimation of Michaelis- Menten kinetic parameters by direct linear plot. Biochem. J. 161: 293-302 
    10. Seo, D. K., G. Papoian, and R. Hoffmann. 2000. Generalized perturbational molecular orbital (PMO) theory. Int. J. Quant. Chem. 77: 408-420 
    11. Verloop, A. W., W. Hoogenstraten, and J. Tipker. 1976. Development and application of new steric substituent parameters in drug design, Vol. 7, pp. 165-207. In E. J. Ariens (ed.). Drug Design. Academic Press, New York 
    12. Hansch, C., E. W. Deutsch, and R. N. Smith. 1965. The use of substituent constants and regression analysis in the study of enzymatic reaction mechanism. J. Am. Chem. Soc. 87: 2738-2742 
    13. Klopman, G. 1974. Chemical Reactivity and Reaction Paths, pp. 55-165. John Wiely & Sons, New York 
    14. Raabo, E. and T. C. Terkildsen. 1960. On the enzymatic determination of blood glucose. Scand. J. Clin. Lab. Invest. 12: 402-407 
    15. Baker, R. 1971. Organic Chemistry of Biological Compounds: Foundations of Modern Biochemistry Series, pp. 167-168. Prentice-Hall, Inc., Englewood Cliffs, New Jersy 
    16. Joshi, M. D., G. Sidhu, I. Pot, G. D. Brayer, S. G. Withers, and L. P. Mclntosh. 2000. Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299: 255-279 
    17. Torronen, A. and J. Rouvinen. 1997. Structural and functional properties of low molecular weight endo-1,4-beta-xylanase. J. Biotechnol. 57: 137-149 
    18. Seidle, H. F., I. Marten, O. Shoseyov, and R. E. Huber. 2004. Physical and kinetic properties of the Family 3 $\beta$- glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J. 23: 11-23 
    19. Bender, M. L., R. J. Bergeron, and M. Komiyama. 1984. General acid-base catalysis: Enzymatic reactions, pp. 116-129. The Bioorganic Chemistry of Enzymatic Catalysis. John Wiley & Sons, New York 
    20. Devillers, J. and A. T. Balaban. 1999. Topological Indices and Related Descriptors in QSAR and QSPR, pp. 1-20. Gordon and Breach Science Publishers, Switzerland 
    21. Hansch, C. and A. Leo. 1995. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, pp. 223-288. ACS Professional Reference Book, American Chemical Society, Washington, DC 
    22. Jin, J. H., U. S. Jung, J. W. Nam, Y. H. In, S. Y. Lee, D. H. Lee, and J. W. Lee. 2005. Construction of comprehensive metabolic network for glycolysis with regulation mechanisms and effectors. J. Microbiol. Biotechnol. 15: 161-174     
    23. Gupta, S. P. 1987. QSAR studies on enzyme inhibitors. Chem. Rev. 87: 1183-1253 
    24. Li, W. and I. Kubo. 2004. QSAR and kinetics of the inhibition of benzaldehyde derivatives against Sacrophaga neobelliaria phenoloxidase. Bioorg. Med. Chem. 12: 701-713 
    25. Yoon, M. H. and W. Y. Choi. 2007. Characterization and action patterns of two $\beta$-1,4-glucanases purified from Cellulomonas uda CS1-1. J. Microbiol. Biotechnol. In Press     
    26. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275 
    27. Stewart, J. J. 1990. MOPAC: A semiempirical molecular orbital program. J. Comp. Aided Mol. Design 4: 1-105 
    28. Taylor, P. J. 1990. In Hydrophobic properties of drug,, pp. 241-294. In C. Hansch, P. G. Sammes, and J. B. Taylor (eds.). Comprehensive Medical Chemistry. Pergamon Press, Toronto 
    29. Dewar, M. J. S., E. G. Zoebish, E. F. Healy, and J. J. P. Stewart. 1985. AMI: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107: 3902-3909 
    30. Oleson, E. C. and R. E. Christofferson. 1979. Computerassisted Drug Design, pp. 161-189. Acs. Symp. Ser. No. 112, ACS, Washington, D.C 
    31. Kubinyi, H. 1993. QSAR: Hansch Analysis and Related Approaches, pp. 27-85. VCH Publishers, New York, NY 

 저자의 다른 논문

  • 윤민호 (64)

    1. 1991 "리그닌 분해균 Coriolus versicolor CV3에 의한 Laccase의 생산" 농업과학연구 = CNU Journal of agricultural science 18 (2): 157~163    
    2. 1997 "산채류로부터 혈소판응집 억제물질의 검색" 농업과학연구 = CNU Journal of agricultural science 24 (2): 267~274    
    3. 1997 "Cellulomonas sp. CS1-1이 미소결정성 섬유소로부터 생산한 Carboxymethyl Cellulase의 효소적 성질" 농업과학연구 = CNU Journal of agricultural science 24 (2): 275~282    
    4. 1998 "호알칼리성 섬유소분해세균 Pseudomonas sp.의 분리 및 특성" 농업과학연구 = CNU Journal of agricultural science 25 (1): 124~130    
    5. 1998 "Pseudomonas sp. AC-711이 생산하는 알칼리성 Cellulase의 부분정제 및 효소적 성질" 농업과학연구 = CNU Journal of agricultural science 25 (1): 131~137    
    6. 1999 "느릅나무 뿌리껍질 성분의 유방염균에 대한 항균효과" 농업과학연구 = CNU Journal of agricultural science 26 (1): 71~76    
    7. 1999 "월동 볏짚의 미생물 분포 및 청국장 발효효과" 농업과학연구 = CNU Journal of agricultural science 26 (1): 77~83    
    8. 2000 "Acinetobacter lwoffi PO8에 의한 인산흡수 및 축적" 한국농화학회지 = Journal of the Korean society of Agricultural Chemistry and Biotechnology 43 (3): 163~168    
    9. 2001 "Trametes versicolor에 의한 상수리나무의 분해형태" 농업과학연구 = CNU Journal of agricultural science 28 (2): 125~131    
    10. 2005 "Preparation and Swelling Characteristics of Hydrogel from Microbial Poly(${\gamma}-glutamic acid$) by ${\gamma}$-Irradiation" Macromolecular research 13 (4): 339~343    
  • Choi, Woo-Young (56)

  • 성낙도 (184)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역



유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기