HOME> 논문 > 논문 검색상세

## 논문 상세정보

### 토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선 A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections

고광희   (광주과학기술원UU0000201  );
• #### 초록

In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

• #### 주제어

surface to surface intersection .   geometric modeling .   robustness .   validated ODE solver .   topology .   accuracy.

• #### 참고문헌 (18)

1. Farouki, R. T., 'Closing the Gap between CAD Model and Downstream Application', SIAM News, Vol. 32, No. 5, pp. 1-3, 1999
2. Sederberg, T. W., Implicit and Parametric Curves and Surfaces for Computer Aided Geometric Design, PhD Thesis, Purdue University, 1983
3. Katz, S. and Sederberg, T. W., 'Genus of the Intersection Curve of Two Rational Surface Patches', Computer Aided Geometric Design, Vol. 5, pp. 253-258, 1988
4. Hoschek, J. and Lasser, D., Fundamentals of Computer Aided Geometric Design, A K Peters, Wellesley, MA, 1993
5. Bajaj, C. L. and Xu, G., 'NURBS Approximation of Surface/Surface Intersection Curves', Advances in Computational Mathematics, Vol. 2, pp. 1-21, 1994
6. Mukundan, H., Ko, K. H., Maekawa, T., Sakkalis, and Patrikalakis, N. M., 'Tracing Surface Intersections with a Validated ODE System Solver', Proceedings of the 9th EG/ACM Symposium on Solid Modeling and Applications, G. Elber, N. Patrikalakis and P. Brunet, editors. pp. 249-254. Genoa, Italy, Eurographics Press, 2004
7. Plegl, L. A. and Tiller, W., The Nurbs Book, Springer, New York, 1995
8. Zhu, C., Byrd, R. H., Lu, P. and Nocedal, J., LBFGS-B: FORTRAN Subroutines for Large Scale Bound Constrained Optimization. Tech. Report NAM-11, EECS Department, Northwestern University, 1994
9. Song, X., Sederberg, T. W., Zheng, J., Farouki, R. T. and Hass, J., 'Linear Perturbation Methods for Topologically Consistent Representations of Free-form Surface Intersections', Computer Aided Geometric Design, Vol. 21, No. 3, pp. 303-319, 2004
10. Patrikalakis, N. M. and Maekawa, T., Shape Interrogation for Computer Aided Design and Manufacturing, Springer, New York, 2002
11. Grandine, T. A. and Klein, F. W., 'A New Approach to the Surface Intersection Problem', Computer Aided Geometric Design, Vol. 14, pp. 111-134, 1997
12. Nedialkov, N. S., Jackson, K. R. and Corliss, G. F., 'Validated Solutions of Initial Value Problems for Ordinary Differential Equations', Applied Mathematics and Computation, Vol. 105, No. 1, pp. 21-68, 1999
13. Sakkalis, T., 'The Topological Configuration of a Real Algebraic Curve', Bulletin of the Australian Mathematical Society, Vol. 43, pp. 37-50, 1991
14. Patrikalakis, N. M., Maekawa, T., Ko, K. H. and Mukundan, H., 'Surface to Surface Intersections', Computer-Aided Design & Applications, Vol. 1, No. 1-4, pp. 449-458, 2004
15. Lohner, R. J., 'Computation of Guaranteed Enclosures for the Solutions of Ordinary Initial and Boundary Value Problem', In Computational Ordinary Differential Equations, Cash J., Gladwell I., (Eds.), Clarendon Press, Oxford, pp. 425-235, 1992
16. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipes in C, Cambridge University Press, Cambridge, 1988
17. Shen, G., Analysis of Boundary Representation Model Rectification, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2000
18. Park, H., 'An Error-bounded Approximate Method for Representing Planar Curves in B-splines', Computer Aided Geometric Design, Vol. 21, pp. 479-497, 2004

활용도 분석

amChart 영역

amChart 영역

#### 원문보기

• NDSL :
##### 유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기