본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국산업정보학회논문지 = Journal of the Korea Industrial Information Systems Research v.12 no.5, 2007년, pp.39 - 46   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

개인 인증을 위한 활성 윤곽선 모델 기반의 사람 외형 추출 및 추적 시스템
ACMs-based Human Shape Extraction and Tracking System for Human Identification

박세현   (대구대학교 정보통신공학부UU0000355  ); 권경수   (경북대학교 컴퓨터공학과, AI LabUU0000096  ); 김은이   (건국대학교 인터넷미디어공학부UU0000050  ); 김항준   (경북대학교 컴퓨터공학과, AI LabUU0000096  );
  • 초록

    최근 유비쿼터스 환경에서 개인 인증을 위한 연구가 활발하게 진행되고 있다. 그 중에서 걸음걸이 인식은 원거리에서 사람의 물리적인 특성을 이용하여 개인을 인증하는데 효과적인 방법이다. 본 논문에서는 걸음걸이 인식을 위해 평균 이동 알고리즘(mean shift algorithm)과 geodesic 활성 윤곽선 모델(active contour models) 기반의 사람 외형 추출 및 추적 시스템을 제안한다. 활성 윤곽선 모델은 움직이고, 변화하기 쉬운 물체를 다루는데 효과적이다. 그러나 활성 윤곽선 모델의 성능은 초기 커브에 의존적인 한계를 가지고 있다. 이 문제를 극복하기 위해 전형적인 geodesic 활성 윤곽선 모델에 평균 이동 알고리즘을 결합한다. 기본 개념은 진화시키기 전에 level set 방법을 사용하여 초기 커브를 사람 영역에 위치시키고, 그 영역을 충분히 둘러싸도록 크기를 조정한 후에 커브를 진화시킨다. 이러한 방법은 움직임이 큰 물체를 다루거나 진화 횟수를 줄이기 위해 효과적이다. 제안된 시스템은 사람 영역 검출 모듈과 사람 외형 추적모듈로 구성된다. 사람 영역 검출 모듈에서는 배경영상 제거(background subtraction)와 모폴로지 연산(morphologic operation)으로 사람의 실루엣을 검출한다. 이때, 사람의 외형은 평균 이동 알고리즘과 geodesic 활성 윤곽선 모델에 의해 정확하게 검출된다. 실험 결과에서 제안된 방법이 걸음걸이 인식(gait recognition)을 위해 사람의 외형을 효과적으로 정확하게 추출하고 추적됨을 보여준다.


    Research on human identification in ubiquitous environment has recently attracted a lot of attention. As one of those research, gait recognition is an efficient method of human identification using physical features of a walking person at a distance. In this paper, we present a human shape extraction and tracking for gait recognition using geodesic active contour models(GACMs) combined with mean shift algorithm The active contour models (ACMs) are very effective to deal with the non-rigid object because of its elastic property. However, they have the limitation that their performance is mainly dependent on the initial curve. To overcome this problem, we combine the mean shift algorithm with the traditional GACMs. The main idea is very simple. Before evolving using level set method, the initial curve in each frame is re-localized near the human region and is resized enough to include the targe region. This mechanism allows for reducing the number of iterations and for handling the large object motion. The proposed system is composed of human region detection and human shape tracking modules. In the human region detection module, the silhouette of a walking person is extracted by background subtraction and morphologic operation. Then human shape are correctly obtained by the GACMs with mean shift algorithm. In experimental results, the proposed method show that it is extracted and tracked efficiently accurate shape for gait recognition.


  • 주제어

    사람 외형 추울 및 추적 .   활성 윤곽선 모델 .   평균 이동 알고리즘 .   개인 인증.  

  • 이 논문을 인용한 문헌 (1)

    1. Ko, Jaepil ; Ahn, Jung-Ho ; Hong, Won-Kee 2015. "Integral Histogram-based Framework for Rapid Object Tracking" 한국산업정보학회논문지 = Journal of the Korea Industrial Information Systems Research, 20(2): 45~56     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기