본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

Choi, D.H.    (Department of Civil Engineering, Hanyang University   ); Yoo, H.    (Department of Civil Engineering, Hanyang University   ); Shin, J.I.    (Department of Civil Engineering, Hanyang University   ); Park, S.I.    (Department of Civil Engineering, Hanyang University   ); Nogami, K.    (Department of Civil Engineering, Tokyo Metropolitan University  );
  • 초록

    The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.


  • 주제어

    elastic buckling analysis .   inelastic buckling analysis .   nonlinear elasto-plastic analysis .   ultimate load capacity .   cable-stayed bridge.  

  • 참고문헌 (21)

    1. Adeli, H. and Zhang, J. (1995), 'Fully nonlinear analysis of composite girder cable-stayed bridges', Comput. Struct., 54(2), 267-277 
    2. Engesser, F. (1889) 'Ueber die Knickfestigkeit Gerader Stabe', Zeitschrift fur Architektur und Ingenieurwesen. 35, 455 (in German) 
    3. Ermopoulos, J.C., Vlahino, A.S. and Wang, Y.C. (1992), 'Stability analysis of cable-stayed bridges', Comput. Struct., 44(5), 1083-1089 
    4. Ernst, J.H. (1965), 'Der E-Modul von seilen unter berucksichtigung des Durchanges', Der Bauingenieur, 40(2), 52-55 (in German) 
    5. Gimsing, N.J. (1983), Cable-Supported Bridges, Concept and Design. Wiley, Chichester 
    6. AASHTO (2004), LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Third Edition 
    7. Xi, Y. and Kuang, J.S. (1999), 'Ultimate load capacity of cable-stayed bridges', J. Bridge Eng., ASCE, 4(1), 14-22 
    8. Yang, Y.B. and Kuo, S.R. (1994), Theory and Analysis of Framed Structures, Prentice Hall, Singapore 
    9. Kanok-Nukulchai, W. and Hong, G. (1993), 'Nonlinear modelling of cable-stayed bridges', J. Constr. Steel Res., 26(2/3), 249-266 
    10. Karoumi, R. (1999), 'Some modeling aspects in the nonlinear finite element analysis of cable-supported bridges', Comput. Struct., 71, 397-412 
    11. Mcguire, W., Gallagher, R.H. and Ziemian, R.D. (2000), Matrix Structural Analysis, 2nd Edition, John Wiley & Sons, New York 
    12. Poldony, W.J. and Scalzi, J.B. (1976), Construction and Design of Cable-Stayed Bridge. Wiley, New York 
    13. Ren, W.X. (1999), 'Ultimate behavior of long-span cable-stayed bridges', J. Bridge Eng., ASCE, 4(1), 30-37 
    14. Tang, M.C. (1976), 'Buckling of cable-stayed bridges', J. Struct. Div., ASCE, 102(9), 1675-1684 
    15. Wang, Y.C. (1999), 'Number of cable effects on buckling analysis of cable-stayed bridges', J. Bridge Eng., ASCE, 4(4), 242-248 
    16. Wang, P.H., Lin, H.T. and Tang, T.Y. (2002), 'Study on nonlinear analysis of a highly redundant cable-stayed bridge', Comput. Struct., 80, 165-182 
    17. Xi, Y. and Kuang, J.S. (2000), 'An energy approach for geometrically non-linear analysis of cable-stayed bridges', Proc. of the Institution of Civil Engineers-Structures and Buildings, 140, 227-237 
    18. Iwasaki, H., Nogami, K. and Nagai, M. (2001), 'Precision of $E_{f}$ method for evaluating load-carrying capacity of long-span cable-stayed bridges and its ultimate strength check', IABSE Conference, IABSE reports, Seoul, 84, 110-111 
    19. Nagai, M., Fujino, Y., Yamaguchi, H. and Iwasaki, E. (2004), 'Feasibility of a 1400 m span steel cable-stayed bridge', J. Bridge Eng., ASCE, 9(5), 444-452 
    20. George, H.W. (1999), 'Influence of deck material on response of cable-stayed bridges to live loads', J. Bridge Eng., ASCE, 4(2), 136-142 
    21. Shu, H.S. and Wang, Y.C. (2001), 'Stability analysis of box-girder cable-stayed bridges', J. Bridge Eng., ASCE, 6(1), 63-68 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기