본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines

Chang, Young-Ja    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University   ); Kim, Hyo-Lim    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University   ); Sacket, Santosh J.    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University   ); Kim, Kye-Ok    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University   ); Han, Mi-Jin    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University   ); Jo, Ji-Yeong    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University   ); Im, Dong-Soon    (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University  );
  • 초록

    In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ( $[Ca^{2+}]_{i}$ ) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.


  • 주제어

    phosphatidic acid .   lysophosphatidic acid .   G-protein-coupled receptor .   calcium .   $LPA_{1}$ .   $LPA_{3}$.  

  • 참고문헌 (47)

    1. An, S., Bleu, T., Hallmark, O. G. and Goetzl, E. J. (1998a). Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 273, 7906-7910 
    2. An, S., Bleu, T., Zheng, Y. and Goetzl, E. J. (1998b). Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol. Pharmacol. 54, 881-888 
    3. Barritt, G. J., Dalton, K. A. and Whiting, J. A. (1981). Evidence that phosphatidic acid stimulates the uptake of calcium by liver cells but not calcium release from mitochondria. FEBS Lett. 125, 137-140 
    4. Bashir, N., Kuhen, K. and Taub, M. (1992). Phospholipids regulate growth and function of MDCK cells in hormonally defined serum free medium. In Vitro Cell Dev. Biol. 28A, 663-668 
    5. Chang, Y. J., Lee, Y. K., Lee, E. H., Park, J. J., Chung, S. K. and Im, D. S. (2006). Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and $Ca^{2+}$ in the U937 monocyte cell line. Arch. Pharm. Res. 29, 657-665     
    6. Chang, Y. J., Kim, Y. L., Lee, Y. K., Sacket, S. J., Kim, K., Kim, H. L., Han, M., Bae, Y. S., Okajima, F. and Im, D. S. (2007). Dioleoyl phosphatidic acid increases intracellular $Ca^{2+}$ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts. Prostaglandins Other Lipid Mediat. 83, 268-276 
    7. Durgam, G. G., Tsukahara, R., Makarova, N., Walker, M. D., Fujiwara, Y., Pigg, K. R., Baker, D. L., Sardar, V. M., Parrill, A. L., Tigyi, G. and Miller, D. D. (2006). Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg. Med. Chem. Lett. 16, 633-640 
    8. English, D., Cui, Y. and Siddiqui, R. A. (1996). Messenger functions of phosphatidic acid. Chem. Phys. Lipids. 80, 117-132 
    9. English, D., Martin, M., Harvey, K. A., Akard, L. P., Allen, R., Widlanski, T. S., Garcia, J. G. and Siddiqui, R. A. (1997). Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase. Biochem. J. 324 ( Pt 3), 941-950 
    10. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. and Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 294, 1942-1945 
    11. Fernandez, B., Balboa, M. A., Solis-Herruzo, J. A. and Balsinde, J. (1994). Phosphatidate-induced arachidonic acid mobilization in mouse peritoneal macrophages. J. Biol. Chem. 269, 26711-26716 
    12. Fischer, D. J., Nusser, N., Virag, T., Yokoyama, K., Wang, D., Baker, D. L., Bautista, D., Parrill, A. L. and Tigyi, G. (2001). Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 60, 776-784 
    13. Fitzgerald, L. R., Dytko, G. M., Sarau, H. M., Mannan, I. J., Ellis, C., Lane, P. A., Tan, K. B., Murdock, P. R., Wilson, S., Bergsma, D. J., Ames, R. S., Foley, J. J., Campbell, D. A., McMillan, L., Evans, N., Elshourbagy, N. A., Minehart, H. and Tsui, P. (2000). Identification of an EDG7 variant, HOFNH30, a Gprotein-coupled receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun. 273, 805-810 
    14. Gerrard, J. M., Butler, A. M., Peterson, D. A. and White, J. G. (1978). Phosphatidic acid releases calcium from a platelet membrane fraction in vitro. Prostaglandins Med. 1, 387-396 
    15. Harris, R. A., Schmidt, J., Hitzemann, B. A. and Hitzemann, R. J. (1981). Phosphatidate as a molecular link between depolarization and neurotransmitter release in the brain. Science 212, 1290-1291 
    16. Hiramatsu, T., Sonoda, H., Takanezawa, Y., Morikawa, R., Ishida, M., Kasahara, K., Sanai, Y., Taguchi, R., Aoki, J. and Arai, H. (2003). Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase $A_{1}s$, mPA-$PLA_{1\alpha}$ and mPA-$PLA_{1\beta}$. J. Biol. Chem. 278, 49438-49447 
    17. Hornberger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A. and Chien, S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 103, 4741-4746 
    18. Huang, K. S., Li, S. and Low, M. G. (1991). Glycosylphosphatidylinositol-specific phospholipase D. Methods Enzymol. 197, 567-575 
    19. Ikeda, Y., Kikuchi, M., Toyama, K., Watanabe, K. and Ando, Y. (1979). Ionophoretic activities of phospholipids on human platelets. Thromb. Haemost. 41, 779-786 
    20. Im, D. S., Nagano, K., Katada, T., Okajima, F. and Ui, M. (2005). Differential change of Ins-$P_{3}$-$Ca^{2+}$ signaling during culture of rat hepatocytes. Cell Signal.17, 83-91 
    21. Imai, A., Ishizuka, Y., Kawai, K. and Nozawa, Y. (1982). Evidence for coupling of phosphatidic acid formation and calcium influx in thrombin-activated human platelets. Biochem. Biophys. Res. Commun. 108, 752-759 
    22. Jalink, K., van Corven, E. J. and Moolenaar, W. H. (1990). Lysophosphatidic acid, but not phosphatidic acid, is a potent $Ca^{2+}$-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265, 12232-12239 
    23. Kajiyama, Y. and Ui, M. (1994). Switching from alpha 1- to betasubtypes in adrenergic response during primary culture of adult-rat hepatocytes as affected by the cell-to-cell interaction through plasma membranes. Biochem. J. 303 ( Pt 1), 313-321 
    24. Kawase, T. and Suzuki, A. (1988). Phosphatidic acid-induced calcium mobilization in osteoblasts. J. Biochem. (Tokyo) 103, 581-582 
    25. Kawase, T. and Suzuki, A. (1990). Initial responses of a clonal osteoblast-like cell line, MOB 3-4, to phosphatidic acid in vitro. Bone Miner. 10, 61-70 
    26. Knauss, T. C., Jaffer, F. E. and Abboud, H. E. (1990). Phosphatidic acid modulates DNA synthesis, phospholipase C, and platelet-derived growth factor mRNAs in cultured mesangial cells. Role of protein kinase C. J. Biol. Chem. 265, 14457-14463 
    27. Kotarsky, K., Boketoft, A., Bristulf, J., Nilsson, N. E., Norberg, A., Hansson, S., Sillard, R., Owman, C., Leeb-Lundberg, F. L. and Olde, B. (2006). Lysophosphatidic Acid Binds to and Activates Gpr92, a G Protein-Coupled Receptor Highly Expressed in Gastro-Intestinal Lymphocytes. J. Pharmacol. Exp. Ther. 318, 619-628 
    28. Krabak, M. J. and Hui, S. W. (1991). The mitogenic activities of phosphatidate are acyl-chain-length dependent and calcium independent in C3H/10T1/2 cells. Cell Regul. 2, 57-64 
    29. Kurz, T., Wolf, R. A. and Corr, P. B. (1993). Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes. Circ. Res. 72, 701-706 
    30. Lee, C. H., Reisine, T. D. and Wax, M. B. (1989). Alterations of intracellular calcium in human non-pigmented ciliary epithelial cells of the eye. Exp. Eye Res. 48, 733-743 
    31. Lee, C. W., Rivera, R., Gardell, S., Dubin, A. E. and Chun, J. (2006). GPR92 as a New $G_{12/13}$- and $G_{q}$-coupled Lysophosphatidic Acid Receptor That Increases cAMP, $LPA_{5}$. J. Biol. Chem. 281, 23589-23597 
    32. Lee, C. W., Rivera, R., Dubin, A. E. and Chun, J. (2007). $LPA_{4}$/GPR23 is an LPA receptor utilizing $G_{s}$, $G_{q}$/$G_{i}$-mediated calcium signaling and $G_{12/13}$-mediated Rho activation. J. Biol. Chem. 282, 4310-4317 
    33. McGhee, J. G. and Shoback, D. M. (1990). Effects of phosphatidic acid on parathyroid hormone release, intracellular free $Ca^{2+}$, and inositol phosphates in dispersed bovine parathyroid cells. Endocrinology 126, 899-907 
    34. Noguchi, K., Ishii, S. and Shimizu, T. (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 278, 25600-25606 
    35. Osugi, T., Uchida, S., Watanabe, Y. and Yoshida, H. (1984). Differences in $Ca^{2+}$ mobilization induced by alpha-adrenergic agonist and phosphatidic acid in cultured hepatocytes. Life Sci. 35, 469-475 
    36. Pearce, B., Jakobson, K., Morrow, C. and Murphy, S. (1994). Phosphatidic acid promotes phosphoinositide metabolism and DNA synthesis in cultured cortical astrocytes. Neurochem. Int. 24, 165-171 
    37. Ryder, N. S., Talwar, H. S., Reynolds, N. J., Voorhees, J. J. and Fisher, G. J. (1993). Phosphatidic acid and phospholipase D both stimulate phosphoinositide turnover in cultured human keratinocytes. Cell Signal. 5, 787-794 
    38. Siddiqui, R. A. and Yang, Y. C. (1995). Interleukin-11 induces phosphatidic acid formation and activates MAP kinase in mouse 3T3-L1 cells. Cell Signal. 7, 247-2 
    39. Siegmann, D. W. (1987). Stimulation of quiescent 3T3 cells by phosphatidic acid-containing liposomes. Biochem. Biophys. Res. Commun. 145, 228-233 
    40. Sonoda, H., Aoki, J., Hiramatsu, T., Ishida, M., Bandoh, K., Nagai, Y., Taguchi, R., Inoue, K. and Arai, H. (2002). A novel phosphatidic acid-selective phospholipase $A_{1}$ that produces lysophosphatidic acid. J. Biol. Chem. 277, 34254-34263 
    41. Stace, C. L. and Ktistakis, N. T. (2006). Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta. 1761, 913-926 
    42. van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T. and Moolenaar, W. H. (1989). Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59, 45-54 
    43. Weiss, S. J., McKinney, J. S. and Putney, J. W., Jr. (1982). Regulation of phosphatidate synthesis by secretagogues in parotid acinar cells. Biochem. J. 204, 587-592 
    44. Wood, C. A., Padmore, L. and Radda, G. K. (1993). The effect of phosphatidic acid on the proliferation of Swiss 3T3 cells. Biochem. Soc. Trans. 21, 369S 
    45. Yanagida, K., Ishii, S., Hamano, F., Noguchi, K. and Shimizu, T. (2007). $LPA_{4}$/p2y9/GPR23 mediates Rho-dependent morphological changes in a rat neuronal cell line. J. Biol. Chem. 282, 5814-5824 
    46. Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci. 94, 45-50 
    47. Moritz, A., De Graan, P. N., Gispen, W. H. and Wirtz, K. W. (1992). Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J. Biol. Chem. 267, 7207-7210 
  • 이 논문을 인용한 문헌 (1)

    1. 2008. "" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea, 31(5): 628~633     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기