본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of power electronics : JPE v.8 no.1, 2008년, pp.101 - 107  

Decision Tree with Optimal Feature Selection for Bearing Fault Detection

Nguyen, Ngoc-Tu   (School of Electrical Engineering, University of UlsanUU0001014  ); Lee, Hong-Hee   (School of Electrical Engineering, University of UlsanUU0001014  );
  • 초록

    In this paper, the features extracted from vibration time signals are used to detect the bearing fault condition. The decision tree is applied to diagnose the bearing status, which has the benefits of being an expert system that is based on knowledge history and is simple to understand. This paper also suggests a genetic algorithm (GA) as a method to reduce the number of features. In order to show the potentials of this method in both aspects of accuracy and simplicity, the reduced-feature decision tree is compared with the non reduced-feature decision tree and the PCA-based decision tree.


  • 주제어

    bearing fault .   diagnostics .   decision tree .   genetic algorithm .   principal component analysis.  

  • 참고문헌 (12)

    1. V. Sugumaran, V. Muralidharan, K. I. Ramachandran, 'Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing', Mechanical Systems and Signal Processing 21, pp. 930-942, 2007 
    2. W. Sun, J. Chen, J. Li, 'Decision tree and PCA-based fault diagnosis of rotating machinery', Mechanical Systems and Signal Processing, 2006 
    3. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publisher, Inc., 1993 
    4. T. Lindh, J. Ahola, P. Spatenka, A-L Rautiainen, 'Automatic bearing fault classification combining statistical classification and fuzzy logic', in NORPIE, 2004 
    5. J. S. Rao, Vibratory Condition Monitoring of Machines, Alpha Science International Ltd., pp. 361-382, 2000 
    6. B. Samanta, K. R. Al-Balushi, 'Artificial Neural Network based fault diagnostics of rolling element bearings using time-domain features', Mechanical Systems and Signal Processing 17, pp. 317-328, 2003 
    7. A. Widodo, B. S. Yang, T. Han, 'Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors', Expert Systems with Applications 32, pp. 299-312, 2007 
    8. B. S. Yang, C. H. Park, H. J. Kim, 'An Efficient Method of Vibration Diagnostics for Rotating Machinery using a Decision Tree', International Journal of Rotating Machinery, Vol.6, No.1, pp. 19-27, 2000 
    9. H. Gu, Z. Gao, F. Wu, 'Selection of Optimal Features for Iris Recognition', in International Symposium on Neural Networks, China, pp. 81-86, 2005 
    10. D. S. Lim, B. S. Yang, D. J. Kim, 'An Expert System for Vibration Diagnosis of Rotating Machinery using Decision Tree', International Journal of COMADEM, pp.31-36, 2000 
    11. D. S. Lim, B. S. Yang, D. J. Kim, 'An Expert System for Vibration Diagnosis of Rotating Machinery using Decision Tree', International Journal of COMADEM, pp.31-36, 2000 
    12. B. Samanta, K. R. Al-Balushi, S. A. Al-Araimi, 'Artificial neural networks and genetic algorithm for bearing fault detection', Soft Coput., pp. 264-271, 2006 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기