본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Evaluation of surrogate models for optimization of herringbone groove micromixer

Ansari, Mubashshir Ahmad    (Department of Mechanical Engineering, Inha University   ); Kim, Kwang-Yong    (Department of Mechanical Engineering, Inha University  );
  • 초록

    Surrogate models have been applied to shape optimizations of a micromixer with the aim of assessing the performance of the models. The surrogate models considered include polynomial response surface approximation, Kriging, and radial basis neural network. In addition, a weighted average model based on global error measures is constructed. A mixing index at the exit of the micromixer is used as the objective function. The mixing index is calculated based on Navier-Stokes equations. Two cases of optimization, one with two design variables and the other with three design variables, have been tested. The design variables are selected among the ratio of the groove depth to channel height, the angle of groove, and the ratio of groove width to groove pitch. D-Optimal design generated sampling points are used for sampling. It is found that although the weighted average model does not predict the best optimal point, it does show consistent and reliable performance.


  • 주제어

    Shape optimization .   Micromixer .   Herringbone groove .   Mixing .   Surrogate model .   Weighted average model.  

  • 참고문헌 (18)

    1. L. Zerpa, N. V. Queipo, S. Pintos and J. Salager, An optimization methodology of alkaline-surfactantpolymer flooding processes using field scale numerical simulation and multiple surrogates, J. of Petroleum Sci. and Eng. 47 (2005) 197-208 
    2. T. Goel, J. Zhao, S. Thakur, R. T. Haftka and W. Shyy, Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation, 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, USA. AIAA (2006) 2006-5047 
    3. A. D. Stroock and G. J. McGraw, Investigation of the staggered herringbone mixer with a simple analytical model. Philos. Trans. R. Soc. London, Ser. A, 362 (2004) 971-986 
    4. D. G. Hassel and W. B. Zimmerman, Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow. Chem. Eng. Sci. 61 (2006) 2977-2985 
    5. A. Samad, K. Y. Kim, T. Goel, R. T. Haftka and W. Shyy, Shape optimization of turbomachinery blade using multiple surrogate models, 10th International Symposium on Advances in Numerical Modeling of Aerodynamics and Hydrodynamics in Turbomachinery, ASME Joint-U.S.-European Fluids Engineering Summer Meeting, Miami, FL, USA, FEDSM2006-98368 
    6. M. A. Ansari and K. Y. Kim, Application of radial basis neural network to optimization of a micromixer. Chem. Eng. Tech. 30 (7) (2007) 962-966 
    7. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan and P. K. Tucker, Surrogate-based analysis and optimization, Prog. in Aerospace. Sci. 41 (2005) 1-28 
    8. J. D. Martin and T. W. Simpson, Use of kriging models to approximate deterministic computer models. AIAA Journal 43 (4) (2005) 853-863 
    9. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, Chaotic mixer for microchannels. Science 295 (2002) 647-651 
    10. G. N. Vanderplaats, Numerical optimization techniques for engineering design with applications, McGraw-Hill, 1984 
    11. MATLAB${\circled}R$, The language of technical computing, Release 14, The MathWorks Inc 
    12. M. L. J. Orr, Centre for Cognitive Science, Edinburgh University, EH 9LW, Scotland, UK, (http://anc.ed.ac.uk/rbf/rbf.html), (1996) 
    13. R. H. Myers and D. C. Montgomery, Response surface methodology: process and product optimization using designed experiment, Wiley, New York, (1995) 
    14. V. Hessel, H. Lowe and F. Schonfeld, 2005, Micromixers-a review on passive and active mixing principles. Chem. Eng. Sci. 60 (2005) 2479-2501 
    15. T. Goel, R. Haftka, W. Shyy and N. Queipo, Ensemble of surrogates, Struct. and Multidisciplinary Optimization, 33 (3) (2007) 199-216 
    16. J. Aubin, D. F. Fletcher, J. Bertrand and C. Xuereb, Characterization of the mixing quality in micromixers. Chem. Eng. Tech. 26 (12) (2003) 1262-1270 
    17. CFX-10.0, Solver Theory, ANSYS 2004 
    18. W. Li and S. Padula, Approximation methods for conceptual design of complex systems, Eleventh International Conference on Approximation Theory (eds. C. Chui, M. Neaumtu, L. Schumaker) (2004) 241-278 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기