본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

A Remote Sensed Data Combined Method for Sea Fog Detection

Heo, Ki-Young   (Division of Earth Environmental System, College of Natural Science, Pusan National UniversityUU0000613  ); Kim, Jae-Hwan   (Division of Earth Environmental System, College of Natural Science, Pusan National UniversityUU0000613  ); Shim, Jae-Seol   (Coastal Disaster Prevention Research Division, Korea Ocean Research & Development InstituteCC0186912  ); Ha, Kyung-Ja   (Division of Earth Environmental System, College of Natural Science, Pusan National UniversityUU0000613  ); Suh, Ae-Sook   (Environmental and Meteorological Satellite Division, Korean Meteorological Administration  ); Oh, Hyun-Mi   (Division of Earth Environmental System, College of Natural Science, Pusan National UniversityUU0000613  ); Min, Se-Yun   (Division of Earth Environmental System, College of Natural Science, Pusan National UniversityUU0000613  );
  • 초록

    Steam and advection fogs are frequently observed in the Yellow Sea from March to July except for May. This study uses remote sensing (RS) data for the monitoring of sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided a valuable information for the occurrence of steam and advection fogs as a ground truth. The RS data used in this study were GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and shortwave IR channel of GOES-9 and MTSAT-1R satellites was applied to detect sea fog. The results showed that DCD, texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind data was used to provide the wind speed criteria for a fog event. The laplacian computation was designed for a measurement of the homogeneity. A new combined method, which includes DCD, QuikSCAT wind speed and laplacian computation, was applied to the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and laplacian are -2.0 K, $8m\;s^{-1}$ and 0.1, respectively. The validation results showed that the new combined method slightly improves the detection of sea fog compared to DCD method: improvements of the new combined method are $5{\sim}6%$ increases in the Heidke skill score, 10% decreases in the probability of false detection, and $30{\sim}40%$ increases in the odd ratio.

  • 주제어

    Sea fog .   Low cloud .   Remote sensing .   Laplacian .   Homogeneity.  

  • 참고문헌 (31)

    1. Bader, M. J., J. R. Forbes, J. R. Grant, R. B. Lilley, and A. J. Waters, 1995. Images in weather forecasting: practical guide for interpreting satellite and radar data. University Press, Cambridge. 
    2. Cho, Y. K., M. O. Kim, and B. C. Kim, 2000. Sea fog around the Korean Peninsula. J. Appl. Meteor., 39: 2473-2479. 
    3. Ellrod, G. P., 2000. Proposed improvements to the GOES nighttime fog product to provide ceiling and visibility information. Preprints, 10th conf. on satellite meteorology and oceanography, Long Beach, CA, Amer. Meteor. Soc., 454-456. 
    4. Klein, S. A. and D. L. Hartmann, 1993. The seasonal cycle of low stratiform cloud. J. Climate, 6: 1587-1606. 
    5. Lee, T. F., F. J. Turk and K. Richardson, 1997. Stratus and fog products using GOES-8-9 3.9${\mu}m$ Data. Wea. Forecasting, 12: 606-619. 
    6. Liu, W. T., H. Hu, Y. T. Song, and W. Tang, 2001. Improvement of scatterometer wind vectorsimpact on hurricane and coastal studies, in Proc. of WCRP/SCOR Workshop on Intercomparison and Validation of Ocean-Atmosphere flux Fields, World Climate Research Programme, Geneva, 197-200. 
    7. Park, H. S., Y. H. Kim, A. S. Suh, and H. H. Lee, 1997. Detection of fog and the low stratus cloud at night using derived dual channel difference of NOAA/AVHRR data. Proceeding of the 18th Asian conference on remote sensing, 20-24 Oct. Kuala lumpur, Malaysia. 
    8. Roach, W. T., 1994. Back to basics: Fog: Part 1 - Definitions and basic physics. Weather, 49: 411-415. 
    9. Uesawa, D., 2006. Status of Japanese Meteorological Satellites and Recent Activities of MSC, Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, June 12-16, 2006. 
    10. Cermak, J. and J. Bendix, 2005. Fog / low stratus detection and discrimination using satellite data. Proceeding of COST722 mid-term workshop on short-range forecasting methods of fog, visibility and low clouds, 20 October 2005, Langen, Germany. 
    11. Coakley, J. A. and F. P. Bretherton, 1982. Cloud cover from high-resolution scanner data: detecting and allowing for partially filled fields of view. J. Geophys. Res., 87: 4917- 4932. 
    12. Wentz, F. J., D. K. Smith, C. A. Mears, and C. L. Gentemann, 2001. Advanced algorithms For QuikSCAT and SeaWinds/AMSR. Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium, 9-13 July 2001, Sydney, Australia. 
    13. Liu, W. T., W. Tang, and R. Polito, 1998. NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction. Geophys. Res. Lett., 25: 761-764. 
    14. Anthis, A. L. and A. P. Cracknell, 1999. Use of satellite images for fog detection (Sensing, 20: 1107-1124.AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas. Int. J. Remote 
    15. Eyre, J. R., J. L. Brownscombe, and R. J. Allam, 1984. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteorol. Mag., 113: 265-271. 
    16. Guidard, V. and D. Tzanos, 2005. Discrimination between fog and low clouds using a combination of satellite data and ground observations. Proceeding of COST722 midterm workshop on short-range forecasting methods of fog, visibility and low clouds, 20 October 2005, Langen, Germany. 
    17. Heo, K. Y. and K. J. Ha, 2004. Classification of synoptic pattern associated with coastal fog around the Korean Peninsula. J. Korean Metor. Soc., 40: 541-556 (in Korean with English abstract). 
    18. Ellrod, G. P., 1995. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea.Forecasting, 10: 606-619. 
    19. Yum, S. S., S. N. Oh, J. Y. Kim, C. K. Kim, and J. C. Nam, 2004. Measurements of Cloud Droplet Size Spectra Using a Forward Scattering Spectrometer Probe (FSSP) in the Korean Peninsula. J. Korean Metor. Soc., 40: 623- 631 (in Korean with English abstract). 
    20. Sakaida, F. and H. Kawamura, 1996. HIGHERS_The AVHRR-based higher spatial resolution sea surface temperature data set intended for studying the ocean south of Japan. J. Oceanogr., 52: 441-455. 
    21. Croft, P. J., R. L. Pfost, J. M. Medlin, and G. A. Johnson, 1997. Fog forecasting for the southern region: A conceptual model approach. Wea. Forecasting, 12: 545-566. 
    22. Scorer, R. S., 1986. Cloud investigation by satellite. Ellis Horwood Ltd., 314 pp. 
    23. Yoo, J. M., M. J. Jeong, and M. Y. Yun, 2005. Optical Characteristics of Fog in Satellite Observation (MODIS) and Numerical Simulation; Effect of Upper Clouds in Nighttime Fog Detection. J. Korean Metor. Soc., 41: 639-650 (in Korean with English abstract). 
    24. Hunt, G. E., 1973. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. Quarterly Journal of Royal Meteorological Society, 99: 346-369. 
    25. Meteorological Satellite Center, 2002. Analysis and use of meteorological satellite images. Meteorological Satellite Center, 1st Edition, 195pp. 
    26. Byers, H. R., 1959. General Meteorology, 3rd Edition, McGraw Hill Book Co., Inc, 540pp. 
    27. Hilliker, J. L. and J. M. Fritsch, 1999. An observations-based statistical system for warm-season hourly probabilistic forecasts of low ceiling at the San Francisco International Airport. J. Appl. Meteor., 38: 1692-1705. 
    28. Bendix, J., B. Thies, J. Cermak, and T. Nauss, 2005. Fog detection from space based on MODIS daytime data - A feasibility study. Wea. Forecasting, 20: 989-1005. 
    29. Nakajima, T. and M. Tanaka, 1988. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation, J. Quant. Spectrosc. Radiat. Transfer, 40: 51-69. 
    30. Fu, G., J. Guo, S.-P. Xie, Y. Duan, and M. Zhang, 2006. Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea. Atmos. Res., 81: 293-303. 
    31. Liu, W. T., H. Hu, and S. Yueh, 2000. Interplay between wind and rain observed in hurricane Floyd. Eos, Trans. Amer. Geophys. Union, 81: 253-257. 
  • 이 논문을 인용한 문헌 (3)

    1. Heo, Ki-Young ; Min, Se-Yun ; Ha, Kyung-Ja ; Kim, Jae-Hwan 2008. "Discrimination between Sea Fog and low Stratus Using Texture Structure of MODIS Satellite Images" 대한원격탐사학회지 = Korean journal of remote sensing, 24(6): 571~581     
    2. Shin, Daegeun ; Park, Hyungmin ; Kim, Jae Hwan 2013. "Analysis of the Fog Detection Algorithm of DCD Method with SST and CALIPSO Data" 대기 = Atmosphere, 23(4): 471~483     
    3. 2016. "" 대한원격탐사학회지 = Korean journal of remote sensing, 32(4): 339~351     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역


  • NDSL :

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기