본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor

Nguyen, Ngoc-Tu    (School of Electrical Engineering, Ulsan Univ.   ); Lee, Hong-Hee    (School of Electrical Engineering, Ulsan Univ.   ); Kwon, Jeong-Min    (School of Electrical Engineering, Ulsan Univ.  );
  • 초록

    Time-domain vibration signals are measured in all horizontal, axial, and vertical directions for induction motor mechanical fault diagnostics. Many features are extracted from these signals. The problem is how to find the good features among the feature set in order to receive reliable classifications. Based on specific distance criteria, a genetic algorithm(GA) is introduced to reduce the number of features by selecting optimized ones for fault classification purpose. A decision tree and multi-class support vector machine are used to illustrate the potentiality and efficiency of this selection method. Comparisons show that the diagnostic systems after selecting specific features perform better than the original system.


  • 주제어

    Mechanical fault detection .   Induction motor .   Genetic algorithm .   Support vector machine .   Decision tree.  

  • 참고문헌 (18)

    1. W. Sun, J. Chen and J. Li, Decision tree and PCAbased fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, (2006) 
    2. V. Sugumaran, V. Muralidharan and K. I. Ramachandran, Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing, Mechanical Systems and Signal Processing 21 (2007) 930-942     
    3. B. S. Yang, C. H. Park and H. J. Kim, An efficient method of vibration diagnostics for rotating machinery using a decision tree, International Journal of Rotating Machinery 6 (1) (2000) 19-27 
    4. B. Samanta and K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing 17 (2003) 317-328 
    5. T. Lindh, J. Ahola, P. Spatenka and A. L. Rautiainen, Automatic bearing fault classification combining statistical classification and fuzzy logic, NORPIE, (2004) 
    6. C. L. Huang and C. J. Wang, A GA-based feature selection and parameters optimization for support vector machines, Expert Systems with Applications 31 (2006) 231-240 
    7. Y. Yang, D. Yu and J. Cheng, A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM, Measurement (2006) doi: 10.1016/j.measurement.2006.10.010 
    8. C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines, Software available at http://www.csie.ntu.edu.tw/-cjlin.libsvm, (2001) 
    9. J. S. Rao, Vibratory Condition Monitoring of Ma chines, Alpha Science International Ltd., (2000) 361-382 
    10. A. Widodo, B. S. Yang and T. Han, Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors, Expert Systems with Applications 32 (2007) 299-312 
    11. C. W. Hsu, C. C. Chang and C. J. Lin, A practical guide to support vector classification. Available at www.csie.ntu.edu.tw/-cjlin/papers/guide/guide.pdf 
    12. D. S. Lim, B. S. Yang and D. J. Kim, An expert system for vibration diagnosis of rotating machinery using decision tree, International Journal of COMADEM (2000) 31- 36 
    13. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publisher, California, USA, (1993) 
    14. L. B. Jack and A. K. Nandi, Fault detection using support vector machines and artificial neural networks, Augmented by Genetic Algorithms, Mechanical Systems and Signal Processing 16 (2002) 373-390 
    15. H. Gu, Z. Gao and F. Wu, Selection of optimal features for iris recognition, International Symposium on Neural Networks, China . (2005) 81-86 
    16. Y. Lei, Z. He, Y. Zi and Q. Hu, Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs, Mechanical Systems and Signal Processing (2007) doi:10.1016/j.ymssp.2006.11.003 
    17. The C4.5 code comes from the Internet (http:// rulequest.com/personal/c4.5r8.tar.gz) 
    18. B. Samanta, K. R. Al-Balushi and S. A. Al-Araimi, Artificial neural networks and genetic algorithm for bearing fault detection, Soft Comput. (2006) 264- 271 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기