본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.14 no.6, 2009년, pp.702 - 707   피인용횟수: 1

Prevention of in Vitro Thermal Aggregation and Inactivation of Foreign Proteins by the Hyperthermophilic Group II Chaperonin $\alpha$-Subunit from Aeropyrum pernix K1

Shin, Eun-Jung    (Department of Biomaterial Control (BK21 program), Dong-Eui University   ); Lee, Jin-Woo    (Department of Biomaterial Control (BK21 program), Dong-Eui University   ); Kim, Jeong-Hwan    (Department of Biomaterial Control (BK21 program), Dong-Eui University   ); Lee, Jae-Hyung    (Basic Science Research Institute, Pukyong National University   ); Kim, Young-Tae    (Department of Microbiology, Pukyong National University   ); Jeon, Sung-Jong    (Department of Biomaterial Control (BK21 program), Dong-Eui University   ); Kim, Yeon-Hee    (Department of Biomaterial Control (BK21 program), Dong-Eui University   ); Nam, Soo-Wan    (Department of Biomaterial Control (BK21 program), Dong-Eui University  );
  • 초록

    In this study, we report that the recombinant $\alpha$ subunit chaperonin protein (ApCpnA) from Aeropyrum pernix K1 can efficiently prevent the thermal aggregation and inactivation of foreign model proteins, such as citrate synthase (CS) from porcine heart, alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae(four 37.5 kDa subunits), and malate dehydrogenase (MDH) from Thermus flavus(two 67 kDa subunits). In the presence of ApCpnA and ATP, the thermal aggregation of CS and ADH were prevented by 90 and 65%, respectively, at each 43 and $50^{\circ}C$ . Also, the activities of CS, ADH, and MDH under the thermal inactivation conditions were stably maintained at higher than 80% by addition of ApCpnA and ATP, while the activities of those enzymes in the absence of ApCpnA and ATP were dramatically inactivated and decreased below 20% within 30 min. Based on these results, we propose that the $\alpha$ subunit chaperonin from the hyperthermophilic archaeon, A. pernix K1 can be utilized to enhance the durability and cost effectiveness of high-temperature biocatalysts.


  • 주제어

    Aeropyrum pernix .   chaperonin .   thermal aggregation .   thermal inactivation.  

  • 참고문헌 (34)

    1. Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354: 490-493 
    2. Minuth, T., G. Frey, P. Lindner, R. Rachel, K. O. Stetter, and R. Jaenicke (1998) Recombinant homo- and heterooligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258: 837-845 
    3. Knapp, S., I. Schhmidt-Krey, H. Hebert, T. Bergman, H. Jornvall, and R. Ladenstein (1994) The molecular chaperonin TF55 from the thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. J. Mol. Biol. 242: 397-407 
    4. Waldmann, T., E. Nimmesgern, M. Nitsch, J. Peters, G. Pfeifer, S. Muller, J. Kellermann, A. Engel, F. U. Hartl, and W. Baumeister (1995) The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur. J. Biochem. 227: 848-856 
    5. Minuth, T., M. Henn, K. Rutkat, S. Andra, G. Frey, R. Rachel, K. O. Stetter, and R. Jaenicke (1999) The recombinant thermosome from the hyperthermophilic archaeon Methanopyrus kandleri: in vitro analysis of its chaperone activity. Biol. Chem. 380: 55-62 
    6. Furutani, M., T. Iida, T. Yoshida, and T. Maruyama (1998) Group II chaperonin in a thermophilic methanogen Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273: 28399-28407 
    7. Chang, Z., T. P. Primm, J. Jakana, I. H. Lee, I. Serysheva, W. Chiu, H. F. Gilbert, and F. A. Quiocho (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp 16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271: 7218-7223 
    8. Kubota, H., G. Hynes, and K. Willson (1995) The chaperonin containing t-complex polypeptide 1(TCP-1) multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3-16 
    9. Okochi, M., H. Matsuzaki, T. Nomura, N. Ishii, and M. Yohda (2005) Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127-134 
    10. Kim, S., K. R. Willson, and A. L. Horwich (1994) Cytosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543-548 
    11. Mayhew, M., A. C. da Silva, J. Martin, H. Erdjument- Bromage, P. Tempst, and F. U. Hartl (1996) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426 
    12. Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano (2006) Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131-136 
    13. Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano (2006) Stabilization of free and immobilized enzyme using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131-136 
    14. Yoshida, T., R. Kawaguchi, H. Taguchi, M. Yoshida, T. Yasunaga, T. Wakabayashi, M. Yohda, and T. Maruyama (2002) Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315: 73-85 
    15. Son, H. J., E. J. Shin, S. W. Nam, D. E. Kim, and S. J. Jeon (2007) Properties of the α subunit of a chaperonin from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. FEMS Microbiol. Lett. 266: 103-109 
    16. Gutsche, I., L. O. Essen, and W. Baumeister (1999) Group II chaperonins: New TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312 
    17. Marco, S., D. Ure$\tilde{n}$a, J. L. Carrascosa, T. Waldmann, J. Peters, R. Hegerl, G. Pfeifer, H. Sack-Kongehl, and W. Baumeister (1994) The molecular chaperone TF55. Assessment of symmetry. FEBS Lett. 341: 152-155 
    18. Guagliardi, A., L. Cerchia, S. Bartolucci, and M. Rossi (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436-1443 
    19. Zhi, W., S. J. Landry, L. M. Gierasch, and P. A. Srere (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein Sci. 1: 522-529 
    20. Pipps, B. M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister (1993) Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361: 475-477 
    21. Hirai, H., K. Noi, K. Hongo, T. Mizobata, and Y. Kawata (2008) Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. J. Biochem. 143: 505-515 
    22. Wiech, H., J. Buchner, R. Zimmermann, and U. Jakob (1992) Hsp90 chaperones protein folding in vitro. Nature 358: 169-170 
    23. Ditzel, L., J. Lowe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125-138 
    24. Andra, S., G. Frey, M. Nitsch, W. Baumeister, and K. O. Stetter (1996) Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri. FEBS Lett. 379: 127-131 
    25. Guagliardi, A., L. Cerchia, and M. Rossi (1995) Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J. Biol. Chem. 270: 28126-28132 
    26. Buchner, J., M. Schmidt, M. Fuchs, R. Jaenicke, R. Rudolph, F. X. Schmid, and T. Kiefhaber (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochem. 30: 1586-1591 
    27. Isumi, M., S. Fuiwara, M. Takagi, S. Kanaya, and T. Imanaka (1999) Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65: 1801-1805 
    28. Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang (2007) Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47: 132-137 
    29. Laksanalamai, P., A. R. Pavlov, A. I. Slesarev, and F. T. Robb (2006) Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Biotechnol. Bioeng. 93: 1-5 
    30. Yan, Z., S. Fujiwara, K. Kohda, M. Takagi, and T. Imanaka (1997) In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785-789 
    31. Langer, T., G. Pfeifer, J. Martin, W. Baumeister, and F. U. Hartl (1992) Chaperonin mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11: 4757-4765 
    32. Yoshida, T., M. Yohda, T. Iida, T. Maruyama, H. Taguchi, K. Yazaki, T. Ohta, M. Odaka, I. Endo, and Y. Kagawa (1997) Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273: 635-645 
    33. Hongo, K., H. Hirai, C. Uemura, S. Ono, J. Tsunemi, T. Higurashi, T. Mizobata, and Y. Kawata (2006) A novel ATP/ADP hydrolysis activity of hyperthermostable group II chaperonin in the presence of cobalt or manganese ion. FEBS Lett. 580: 34-40 
    34. Zhi, W., P. Srere, and C. T. Evans (1991) Conformational stability of pig citrate synthase and some activesite mutants. Biochem. 30: 9281-9286 
  • 이 논문을 인용한 문헌 (1)

    1. 2011. "" Journal of microbiology and biotechnology, 21(2): 212~217     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기