본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.14 no.5, 2009년, pp.571 - 576   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Effects of Oxygen Volumetric Mass Transfer Coefficient on Transglutaminase Production by Bacillus circulans BL32

Souza, Claucia Fernanda Volken De    (Food Science and Technology Institute, Federal University of Rio Grande do Sul State   ); Rodrigues, Rafael Costa    (Food Science and Technology Institute, Federal University of Rio Grande do Sul State   ); Ayub, Marco Antonio Zachia    (Food Science and Technology Institute, Federal University of Rio Grande do Sul State  );
  • 초록

    The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation and aeration was evaluated through the oxygen volumetric mass transfer coefficient ( $k_La$ ). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; $k_La$ of 33.7 $h^{-1}$ ), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when $k_La$ varied from 4.4 to 33.7 $h^{-1}$ . The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation.


  • 주제어

    transglutaminase .   spores formation .   Bacillus circulans BL32 .   aeration .   agitation .   volumetric oxygen mass transfer coefficient( $K_La$).  

  • 참고문헌 (36)

    1. Aeschlimann, D. and M. Paulsson (1994) Transglutaminase: protein cross-linking enzyme in tissues and body fluids. Thromb. Haemostasis 71: 402-415 
    2. Tellez-Luis, S., J. A. Ram$\acute{i}$rez, and M. Vazquez (2004) Production of transglutaminase by Streptoverticillium ladakanum NRRL-3191 using glycerol as carbon source. Food Technol. Biotechnol. 42: 75-81 
    3. Cortez, J., P. L. R. Bonner, and M. Griffin (2004) Application of transglutaminases in the modification of wool textiles. Enzyme Microbial Technol. 34: 64-72 
    4. Julicher, P., L. Haalck, M. Meusel, K. Cammann, and F. Spener (1998) In situ antigen immobilization for stable organic-phase immunoelectrodes. Anal. Chem. 70: 3362-3367 
    5. Suzuki, S., Y. Izawa, K. Kobayashi, Y. Eto, Y. Yamanaka, K. Kubota, and K. Yokozeki (2000) Purification and characterization of novel transglutaminase from Bacillus subtilis spores. Biosci. Biotechnol. Biochem. 64: 2344-2351 
    6. Soares, L. H. B., F. Assmann, and M. A. Z. Ayub (2003) Purification and properties of a transglutaminase produced by a Bacillus circulans strain isolated from the Amazon environment. Biotechnol. Appl. Biochem. 37: 295-299 
    7. Sen, R. and K. S. Babu (2005) Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochem. 40: 2531-2538 
    8. Mansour, M. and J. B. Milliere (2001) An inhibitory synergistic effect of a nisin-monolaurin combination on Bacillus sp. vegetative cells in milk. Food Microbiol. 18: 87-94 
    9. Bernard, B. K., S. Tsubuku, and S. Shioya (1998) Acute toxicity and genotoxicity studies of a microbial transglutaminase. Int. J. Toxicol. 17: 703-721 
    10. Kuraishi, C., K. Yamazaki, and Y. Susa (2001) Transglutaminase: its utilization in the food industry. Food Rev. Int. 17: 221-246 
    11. Zhu, Y., A. Rinzema, H. P. J. Bonarius, J. Tramper, and J. Bol (1998) Microbial transglutaminase production by Streptoverticillium mobaraense: analysis of amino acid metabolism using mass balances. Enzyme Microbial Technol. 23: 216-226 
    12. Zhu, Y., A. Rinzema, J. Tramper, and J. Bol (1995) Microbial transglutaminase - a review on its production and application in food processing. Appl. Microbiol. Biotechnol. 44: 277-282 
    13. Josten, A., M. Meusel, and F. Spener (1998) Microbial transglutaminase-mediated synthesis of hapten-protein conjugates for immunoassays. Anal. Biochem. 258: 202-208 
    14. Junqua, M., R. Duran, C. Gancet, and P. Goulas (1997) Optimization of microbial transglutaminase production using experimental designs. Appl. Microbiol. Biotechnol. 48: 730-734 
    15. Arrizubieta, M. J. (2007) Transglutaminases. pp. 567-581. In: J. Polaina and A. P. MacCabe (eds.). Industrial Enzymes: Structure, function, and applications. Springer NY, USA 
    16. Pouliot, K., J. Thibault, A. Garnier, and G. A. Leiva (2000) KLa evaluation during the course of fermentation using data reconciliation techniques. Bioprocess Eng. 23:565-573 
    17. Josten, A., M. Meusel, F. Spener, and L. Haalck (1999) Enzyme immobilization via microbial transglutaminase: a method for the generation of stable sensing surfaces. J. Mol. Catal. B: Enzym. 7: 57-66 
    18. Zhu, Y., A. Rinzema, J. Tramper, E. De Bruin, and J. Bol (1998) Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense. Appl. Microbiol. Biotechnol. 49: 251-257 
    19. Zheng, M., G. Du, J. Chen, and S. Lun (2002) Modelling of temperature effects on batch microbial transglutaminase fermentation with Streptoverticillium mobaraense. World J. Microbiol. Biotechnol. 18: 767-771 
    20. Zilhao, R., R. Isticato, L. O. Martins, L. Steil, U. Volker, E. Ricca, C. P. Moran, and A. O. Henriques (2005) Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J. Bacteriol. 187: 7753-7764 
    21. Motoki, M. and K. Seguro (1998) Transglutaminase and its use for food processing. Trends Food Sci. Technol. 9: 204-210 
    22. Orban, J. M., L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul, and D. A. Vorp (2004) Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. 68A: 756-762 
    23. Zhu, Y., A. Rinzema, J. Tramper, and J. Bol (1996) Medium design based on stoichiometric analysis of microbial transglutaminase production by Streptoverticillium mobaraense. Biotechol. Bioeng. 50: 291-298 
    24. Goldberg, I., B. Sneh, E. Battat, and D. Klein (1980) Optimization of a medium for a high yield production of spore-crystal preparation of Bacillus thuringiensis effective against the egyptian cotton leaf worm Spodoptera littoralis Boisd. Biotechnol. Lett. 2: 419-426 
    25. Kobayashi, K., S. Suzuki, Y. Izawa, I. K. Yokozeki, I. K. Miwa, and S. Yamanaka (1998) Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44: 85-91 
    26. Sarrafzadeh, M. H. and J. M. Navarro (2006) The effect of oxygen on the sporulation, $\delta$-endotoxin synthesis and toxicity of Bacillus thuringiensis H14. World J. Microbiol. Biotechnol. 22: 305-310 
    27. Avignone-Rossa, C., J. Arcas, and C. Mignone (1992) Bacillus thuringiensis growth, sporulation and deltaendotoxin production in oxygen limited and non-limited cultures. World J. Microbiol. Biotechnol. 8: 301-304 
    28. Kang, B. C., S. Y. Lee, and H. N. Chang (1992) Enhanced spore production of Bacillus thuringiensis by fedbatch culture. Biotechnol. Lett. 14: 721-726 
    29. Souza, C. F. V., S. H. Flores, and M. A. Z. Ayub (2006) Optimization of medium composition for the production of transglutaminase by Bacillus circulans BL32 using statistical experimental methods. Process Biochem. 41: 1186-1192 
    30. Grossowicz, N., E. Wainfan, E. Borek, and H. Waelsch (1950) The enzymatic formation of hydroxamic acids from glutamine and asparagine. J. Biol. Chem. 187: 111-125 
    31. Ragkousi, K. and P. Setlow (2004) Transglutaminasemediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J. Bacteriol. 186: 5567-5575 
    32. Nielsen, P. M. (1995) Reactions and potential industrial applications of transglutaminase. Review of literature and patents. Food Biotechnol. 9: 119-156 
    33. Zheng, M., G. Du, W. Guo, and J. Chen (2001) A temperature- shift strategy in batch microbial transglutaminase fermentation. Process Biochem. 36: 525-530 
    34. Nicholson, W. L. and P. Setlow (1990) Sporulation, germination and outgrowth. pp. 391-450. In: C. R. Harwood and S. M. Cutting (eds). Molecular biological methods for Bacillus. John Wiley & Sons Ltd., Chichester, UK 
    35. Zheng, M., G. Du, and J. Chen (2002) pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzy. Microbial Technol. 31: 477-481 
    36. Yan, G., G. Du, Y. Li, J. Chen, and J. Zhong (2005) Enhancement of microbial transglutaminase production by Streptoverticillium mobaraense: application of a twostage agitation speed control strategy. Process Biochem. 40: 963-968 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기