본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.14 no.5, 2009년, pp.680 - 685   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Anaerobic Ammonia-oxidation Coupled with $Fe^{3+}$ Reduction by an Anaerobic Culture from a Piggery Wastewater Acclimated to $NH_4{^+}/Fe^{3+}$ Medium

Park, Woo-Shin    (Radiation Research Division for Industry & Environment, Korea Atomic Energy Institute   ); Nam, Youn-Ku    (Radiation Research Division for Industry & Environment, Korea Atomic Energy Institute   ); Lee, Myun-Joo    (Radiation Research Division for Industry & Environment, Korea Atomic Energy Institute   ); Kim, Tak-Hyun    (Radiation Research Division for Industry & Environment, Korea Atomic Energy Institute  );
  • 초록

    The oxidation of ammonia coupled with the reduction of iron is a unique pathway mostly reported in soils and sediments. An anaerobic sludge from a piggery wastewater treatment plant had been acclimated to an $NH_4{^+}/Fe^{3+}$ -rich environment to secure an enrichment culture and investigate an anaerobic ammonia oxidation coupled with an iron reduction. The enrichment culture showed an average pH of 6.8 and the concentration of mixed liquor volatile suspended solid was measured as 1,120 mg/L. The mol ratio of oxidized $NH_4{^+}$ and reduced $Fe^{3+}$ was 0.33 mol $NH_4{^+}$ /mol $Fe^{3+}$ . It was suggested that the culture acclimated to $NH_4{^+}/Fe^{3+}$ contained the anaerobic ammonia oxidizing bacteria as well and thus $NH_4{^+}$ was fully oxidized to $NO_3{^-}$ by the bacterial consortia. In a batch experiment using the culture, the oxidation of $NH_4{^+}$ was increased as the initial concentration increased. However, it was suspected from the experimental results that other iron reducing bacteria had grown under the environment applied for the enrichment culture. As a result, it was observed that heterotrophic and autotrophic iron reducers were competing for $Fe^{3+}$ .


  • 주제어

    anaerobic ammonia oxidation .   autotrophic iron reduction .   heterotrophic iron reduction .   competition for ferric iron .   piggery wastewater.  

  • 참고문헌 (13)

    1. Noophan, P., S. Sripiboon, M. Damrongsri, and J. Munakata-Marr (2009) Anaerobic ammonium oxidation by Nitrosomonas spp. and ANAMMOX bacteria in a sequencing batch reactor. J. Environ. Manag. 90: 967-972 
    2. Ratering, S. and S. Schnell (2001) Nitrate-dependent iron(II) oxidation in paddy soil. Environ. Microbiol. 3: 100-109 
    3. Dichristina, T. (1996) Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J. Bacteriol. 174: 1891-1896 
    4. Clement, J., J. Shrestha, J. G. Ehrenfeld, and P. R. Jaffe (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem. 37: 2323-2328 
    5. Bock, E., I. Schmidt, R. Stuven, and D. Zart (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163: 16-20 
    6. Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555 
    7. Thuan, T. H., D. J. Jahng, J. Y. Jung, D. J. Kim, W. K. Kim, Y. J. Park, J. E. Kim, and D. H. Ahn (2004) Anammox bacteria enrichment in upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 9: 345-351     
    8. Neubauer, S. C., D. Emerson, and J. P. Megonigal (2002) Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl. Environ. Microbiol. 68: 3988-3995 
    9. Strous, M., E. V. Gerven, J. G. Kuenen, and M. Jetten (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (ANAMMOX) sludge. Appl. Environ. Microbiol. 63: 2446-2448 
    10. Knight, V., F. Caccavo, S. Wudyka, and R. Blakemore (1996) Synergistic iron reduction and citrate oxidation by Shewanella alga and Aeromonas veronii. Arch. Microbiol. 166: 269-274 
    11. Roden, E. E. and R. G. Wetzel (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41: 1733-1748 
    12. Tran, H. T., Y. J. Park, M. K. Cho, D. J. Kim, and D. H. Ahn (2006) Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor. Biotechnol. Bioprocess Eng. 11: 199-204     
    13. Pham, C. A., S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H. Yi, and J. Chun (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223:129-134 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기