본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.14 no.3, 2009년, pp.274 - 280   피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Improvement of Soluble Recombinant Interferon-$\alpha$ Expression by Methyl $\alpha$-D-glucopyranoside in araBAD Promoter System of Escherichia coli

Jung, Kyung-Hwan    (Division of Food and Biotechnology, Chungju National University   ); Lee, You-Jin    (Division of Food and Biotechnology, Chungju National University   ); Yeon, Ji-Hyeon    (Division of Food and Biotechnology, Chungju National University   ); Yoo, Sun-Kyun    (Department of Food Science and Biotechnology, Joongbu University   ); Chung, Byeong-Churl    (Department of Medical Genetic Engineering, School of Medicine, Keimyung University  );
  • 초록

    To improve the soluble expression of recombinant human interferon- $\alpha$ that was directed by the araBAD promoter system of Escherichia coli, we attempted to control the overall protein expression rate via the addition of a repressor, methyl $\alpha$ -D-glucospyranoside( $\alpha$ -MG). Recombinant interferon- $\alpha$ was usually expressed as an inclusion body at the end of DO (dissolved oxygen)-stat fed-batch culture. However, the addition of 0.0025 to 0.01% $\alpha$ -MG after 0.5% L-arabinose induction effectively inhibited a tendency towards the formation of inclusion bodies, in which 67.6 to 73.1% of the expressed interferon- $\alpha$ was found in the soluble fraction. It was likely that the addition of a repressor after L-arabinose induction partially modulated the transcription rate from the araBAD promoter system and changed the ratio of soluble and insoluble interferon- $\alpha$ expression. This modulation might be considered as a method that can improve the soluble expression level of recombinant protein at the optimal temperature for cell growth.


  • 주제어

    araBAD promoter .   methyl $\alpha$-D-glucopyranoside .   soluble expression of interferon- $\alpha$ .   modulation of transcription .   Escherichia coli.  

  • 참고문헌 (45)

    1. Lichenstein, H. S., E. P. Hamilton, and N. Lee (1987) Repression and catabolite gene activation in the araBAD operon. J. Bacteriol. 169: 811-822 
    2. Lee, C., S. G. Lee, and S. Takahashi (2003) The soluble expression of the human renin binding protein using fusion partners: A comparison of ubiquitin, thioredoxin, maltose binding protein, and NusA. Biotechnol. Bioprocess Eng. 8: 89-93 
    3. Shin, E. J., S. L. Park, S. J. Jeon, J. W. Lee, Y. T. Kim, Y. H. Kim, and S. W. Nam (2006) Effect of molecular chaperones on the soluble expression of alginate lyase in E. coli. Biotechnol. Bioprocess Eng. 11: 414-419     
    4. Babu, K. R., S. Swaminathan, S. Marten, N. Khanna, and U. Rinas (2000) Production of interferon-$\alpha$ in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl. Microbiol. Biotechnol. 53: 655-660 
    5. Khalilzadeh, R., S. A. Shojaosadati, N. Maghsoudi, J. Mohammadian-Mosaabadi, M. R. Mohammadi, A. Bahrami, N. Maleksabet, M. A. Nassiri-Khalilli, M. Ebrahimi, and H. Naderimanesh (2004) Process development for production of recombinant human interferon-$\gamma$ expressed in Escherichia coli. J. Ind. Microbiol. Biotechnol. 31: 63-69 
    6. Panda, A. K. (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 85: 43-93 
    7. Bostrom, M., K. Markland, A. M. Sanden, M. Hedhammar, S. Hober, and G. Larsson (2005) Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Appl. Microbiol. Biotechnol. 68: 82-90 
    8. Lim, H.-K., S.-G. Kim, K.-H. Jung, and J.-H. Seo (2004) Production of the kringle fragments of human apolipoprotein(a) by continuous lactose induction strategy. J. Biotechnol. 108: 271-278 
    9. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130 
    10. Lim, H.-K. and K.-H. Jung (1998) Improvement of heterologous protein productivity by controlling postinduction specific growth rate in recombinant Escherichia coli under control of the PL promoter. Biotechnol. Prog. 14: 548-553 
    11. Wycuff, D. R. and K. S. Matthews (2002) Generation of an AraC-araBAD promoter-regulated T7 expression system. Anal. Biochem. 277: 67-73 
    12. Choi, J. H., K. C. Keum, and S. Y. Lee (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem. Eng. Sci. 61: 876-885 
    13. Singh, S. M. and A. K. Panda (2005) Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99: 303-310 
    14. Gendron, R. P. and D. E. Sheppard (1974) Mutations in the L-arabinose operon of Escherichia coli B/r that results in hypersensitivity to catabolite repression. J. Bacteriol. 117: 417-421 
    15. Zhang, X. and R. Schleif (1998) Catabolite gene activator protein mutations affecting activity of the araBAD promoter. J. Bacteriol. 180: 195-200 
    16. Mogk, A., M. P. Mayer, and E. Deuerling (2002) Mechanisms of protein folding: molecular chaperones and their application in biotechnology. Chembiochem. 3:807-814 
    17. Sanden, A. M., M. Bostrom, K. Markland, and G. Larsson (2005) Solubility and proteolysis of the Zb-MalE and Zb-MalE31 proteins during overproduction in Escherichia coli. Biotechnol. Bioeng. 90: 239-247 
    18. S$\o$rensen, H. P. and K. K. Mortensen (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115: 113-128 
    19. Tyler, B. and B. Magasanik (1970) Physiological basis of transient repression of catabolite enzymes in Escherichia coli. J. Bacteriol. 102: 411-422 
    20. van den Berg, B., R. J. Ellis, and C. M. Dobson (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 18: 6927-6933 
    21. Lim, H.-K., S.-U. Lee, S.-I. Chung, K.-H. Jung, and J.-H. Seo (2004) Induction of the T7 promoter using lactose for production of recombinant plasminogen kringle 1-3 in Escherichia coli. J. Microbiol. Biotechnol. 14: 225-230     
    22. Jung, K.-H., J.-H. Yeon, S.-K. Moon, and J. H. Choi (2008) Methyl $\alpha$-D-glucopyranoside enhances the enzymatic activity of recombinant $\beta$-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 695-701 
    23. Esposito, D. and D. K. Chatterjee (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17: 353-358 
    24. Panda, A. K., R. H. Khan, K. B. C. Appa Rao, and S. M. Totey (1999) Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J. Biotechnol. 75: 161-172 
    25. Jung, K.-H. (2006) Continuous production of recombinant interferon-α in Escherichia coli via the derepression of trp promoter using casamino acid. Process Biochem. 41: 809-814 
    26. Lim, H.-K., K.-H. Jung, D.-H. Park, and S.-I. Chung (2000) Production characteristics of interferon-α using L-arabinose promoter system in a high-cell-density culture. Appl. Microbiol. Biotechnol. 53: 201-208 
    27. Chou, C. H., G. N. Bennett, and K. Y. San (1994) Effect of modulated glucose uptake on high-level recombinant protein production in a dense Escherichia coli culture. Biotechnol. Prog. 10: 644-647 
    28. Schmidt, M., K. R. Babu, N. Khanna, S. Marten, and U. Rinas (1999) Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J. Biotechnol. 68: 71-83 
    29. Lee, Y.-J. and K.-H. Jung (2007) Modulation of the tendency towards inclusion body formation of recombinant protein by the addition of glucose in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 17: 1898-1903     
    30. Newman, J. R. and C. Fuqua (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227: 197-203 
    31. Rabhi-Essafi, I., A. Sadok, N. Khalaf, and D. M. Fathallah (2007) A strategy for high-level expression of soluble and functional human interferon alpha as a GSTfusion protein in E. coli. Protein Eng. Des. Sel. 20: 201-209 
    32. Choi, S.-J., D.-H. Park, and K.-H. Jung (2001) Develop ment and optimization of two-stage cyclic fed-batch culture for hG-CSF production using L-arabinose promoter of Escherichia coli. Bioproc. Biosyst. Eng. 24: 51-58 
    33. Barrios-Rivera, S. J., Y. T. Yang, G. N. Bennett, and K. Y. San (2000) Effect of glucose analog supplementation on metabolic flux distribution in ananerobic chemostat cultures of Escherichia coli. Metabolic Eng. 2: 149-154 
    34. Cho, E. K. (2007) Enhanced tolerance against freezing stress in Escherichia coli cells expressing an algal cyclophilin gene. Biotechnol. Bioprocess Eng. 12: 502-507     
    35. Johnson, C. M. and R. T. Schleif (1995) In vivo induction kinetics of the arabinose promoters in Escherichia coli. J. Bacteriol. 177: 3438-3442 
    36. Park, S. J., K. Ryu, C. W. Suh, Y. G. Chai, O. B. Kwon, S. K. Park, and E. K. Lee (2002) Solid-phase refolding of poly-lysine tagged fusion protein of hEGF and angiogenin. Biotechnol. Bioprocess Eng. 7: 1-5     
    37. Vallejo, L. F., M. Brokelmann, S. Marten, S. Trappe, J. Cabrera-Crespo, A. Hoffmann, G. Gross, H. A. Weich, and U. Rinas (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J. Biotechnol. 94: 185-194 
    38. Jung, K.-H. (2008) Enhanced enzyme activities of inclusion bodies of recombinant $\beta$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442     
    39. S$\o$
    40. Bae, J. W., S. Shin, S. M. Raj, S. E. Lee, S. G. Lee, Y. J. Jeong, and S. Park (2008) Construction and characterization of a recombinant whole-cell biocatalyst of Escherichia coli expressing styrene monooxygenase under the control of arabinose promoter. Biotechnol. Bioprocess Eng. 13: 69-76     
    41. Koo, T. Y. and T. H. Park (2007) Expression of recombinant human growth hormone in a soluble form in Escherichia coli by slowing down the protein synthesis rate. J. Microbiol. Biotechnol. 17: 579-585     
    42. Manderson, D., R. Dempster, and Y. Chisti (2006) Production of an active recombinant Aspin antigen in Escherichia coli for identifying animals resistant to nematode infection. Enzyme Microb. Technol. 38: 591-598 
    43. Schleif, R. (2000) Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16: 559-565 
    44. Hoffmann, F., J. van den Heuvel, N. Zidek, and U. Rinas (2004) Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34: 235-241 
    45. Patkar, A., N. Vijayasankaran, D. W. Urry, and F. Srienc (2002) Flow cytometry as a useful tool for process development: rapid evaluation of expression systems. J. Biotechnol. 93: 217-229 
  • 이 논문을 인용한 문헌 (2)

    1. 2010. "" Biotechnology and bioprocess engineering, 15(4): 620~625     
    2. 2011. "" Journal of microbiology and biotechnology, 21(2): 176~182     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기