본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.14 no.2, 2009년, pp.225 - 231   피인용횟수: 1

The Optimal Growth Conditions for the Biomass Production of Isochrysis galbana and the Effects That Phosphorus, $Zn^{2+}$, $CO_2$, and Light Intensity Have on the Biochemical Composition of Isochrysis galbana and the Activity of Extracellular CA

Yingying, Sun    (School of Ocean, Huaihai Institute of Technology   ); Changhai, Wang    (School of Ocean, Yantai University  );
  • 초록

    The effects of phosphorus, $Zn^{2+}$ , $CO_2$ , and light intensity on growth, biochemical composition, and the activity of extracellular carbonic anhydrase (CA) in Isochrysis galbana were investigated. A significant change was observed when the concentration of phosphorus in the medium was increased from $5{\mu}mol/L$ to $1000{\mu}mol/L$ affecting I. galbana's cell density, biochemical composition, and the activity of extracellular CA. Phosphorous concentration of $50{\mu}mol/L$ to $500{\mu}mol/L$ was optimal for this microalgae. The $Zn^{2+}$ concentration at $10{\mu}mol/L$ was essential to maintain optimal growth of the cells, but a higher concentration of $Zn^{2+}$ ( $\geq\;1000{\mu}mol/L$ ) inhibited the growth of I. galbana. High $CO_2$ concentrations (43.75 mL/L) significantly increased the cell densities compared to low $CO_2$ concentrations (0.35 mL/L). However, the activity of extracellular CA decreased significantly with an increasing concentration of $CO_2$ . The activity of extracellular CA at a $CO_2$ concentration of 43.75 mL/L was approximately 1/6 of the activity when the $CO_2$ concentration was at 0.35 mL/L $CO_2$ . Light intensity from 4.0 mW/ $cm^2$ to 5.6 mW/ $cm^2$ was beneficial for the growth, biochemical composition and the activity of extracellular CA. The lower and higher light intensity was restrictive for growth and changed its biochemical composition and the activity of extracellular CA. These results indicate that phosphorus, $Zn^{2+}$ , $CO_2$ , and light intensity are important factors that impact growth, biochemical composition and the activity of extracellular CA in I. galbana.


  • 주제어

    Isochrysis galban .   extracellular carbonic anhydrase .   light intensity .   phosphorus .   $Zn^{2+}$.  

  • 참고문헌 (32)

    1. Brown, M. R., G. A. Dunstan, S. W. Jeffrey, and J. M. LeRoi (1993) The influence of irradiance on the biochemical composition of the prymnesiophyte Isochrysis sp. (clone T-ISO). J. Phycol. 29: 601-612 
    2. Harrison, P. J., P. A. Thompson, and G. S. Calderwood (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J. Appl. Phycol. 2: 45-56 
    3. Thompson, P. A., M. X. Guo, P. J. Harrison, and J. N. C. Whyte (1992) Effects of variation in temperature. I: on the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28: 481-488 
    4. Thompson, P. A., M. X. Guo, and P. J. Harrison (1994) Influence of irradiance on the nutritional value of two phytoplankton species fed to larval Japanese scallops (Pationpecten yessoensis). Mar. Biol. 119: 89-97 
    5. Dionisio-Sese, M. L. and S. Miyachi (1992) The effect of sodium chloride on carbonic anhydrase activity in marine microalgae. J. Phycol. 28: 619-624 
    6. Chen, X. W. and K. S. Gao (2003) Effect of $CO_2$ concentrations on the activity of photosynthetic $CO_2$ fixation and extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. Chinese Sci. Bull. 30:2616-2620 
    7. John-McKay, M. and M. B. Coleman (1997) Variation in the occurrence of external carbonic anhydrase among strains of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 36: 314-320 
    8. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 
    9. Huang, B. Q., S. Y. Huang, Y. Weng, and H. S. Hong (1999) Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae. Acta Oceanol. Sin. 21: 55-60 
    10. Sun, Y. Y., L. Q. Sun, and C. H. Wang (2005) Effect of microelements on growth of Isochrysis galbana. Journal of Yantai University (Natural Science and Engineering Edition). 18: 281-286 
    11. Nimer, N. A. and M. J. Merrett (1996) The development of a $CO_2$-concentrating mechanism in Emiliana huxleyi. New Phytol. 133: 383-389 
    12. Wilbur, K. M. and N. G. Anderson (1948) Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176: 147-154 
    13. Janette, P. F. and R. C. John (1994) Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiol. 106:103-108 
    14. Wang, C. H. and Y. Y. Sun (2006) Initial researches on the growth inhibitor in culture of Isochrysis galbana. Ma. Sci. Bull. 25: 29-33 
    15. Jensen, A. (1978) Handbook of Physiological Methods. pp. 59-70. Cambridge University Press, NY, USA 
    16. Kelley, J. C. O. (1974) Micronutrient elements considered essential to all algae. pp. 617-621. In: W.D.P. Stewart (eds.). Algal Physiology and Biochemistry. University of California Press, Oxford, UK 
    17. Zhang, T. M., G. S. Du, Z. S. Yang, D. W. Wu, and Z. L. Hua (2006) Effect of zinc on two phytoplanktons in fresh water. Acta Bot. Boreal. Occident. Sin. 26: 1722-1726 
    18. Li, W. Q., A. G. Cai, X. Wang, and R. Chen (1994) Effects of light and nutrients on biochemical composition of Phaeodactylum tricornutum. China Environ. Sci. 14:185-189 
    19. Mercado J. M., F. J. L. Gordillo, F. L. Figueroa, and F. X. Niell (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J. Exp. Mar. Biol. Ecol. 221: 209-220 
    20. Guillard, R. R. L. and J. H. Ryther (1962) Studies of marine planktonic diatom. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 17: 309-314 
    21. Yi, W. L., X. C. Jin, Z. S. Chu, X. Z. Hu, Z. Y. Ma, G. D. Wang, and S. Y. Zhang (2004) Effect of different P mass concentrations on growth and P-in-cell of Microcystis aeruginosa. Res. Environ. Sci. 17: 58-61 
    22. Villand, P., M. Eriksson, and G. Samuelsson (1997) Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Biochem. J. 327:51-57 
    23. Colman, B. and C. Rotatore (1995) Photosynthetic inorganic carbon up take and accumulation in two marine diatoms. Plant Cell Environ. 19: 919-924 
    24. Wang, S. S., Y. D. Liu, C. Y. Jin, and D. H. Li (2002) Effects of zinc ion on photosynthetic system of Anabaena azotica Ley. J. Lake Sci. 14: 350-356 
    25. Saoudi-Helis, L., J. P. Dubacq, Y. Marty, J. F. Samain, and C. Gudin (1994) Influence of growth rate on pigment and lipid composition of the microalga Isochrysis aff. galbana clone T.iso. J. Appl. Phycol. 6: 315-322 
    26. Nimer, N. A. and M. J. Merrett (1992) Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann). New Phytol. 121: 173-177 
    27. Takeyama, H., K. Iwamoto, S. Hata, H. Takano, and T. Matsunaga (1996) DHA enrichment of rotifers: A simple two-step culture using the unicellular algae Chlorella regularis and Isochrysis galbana. J. Mar. Biotechnol. 3:244?247 
    28. Fidalgo, J. P., A. Cid, E. Torres, A. Sukenik, and C. Herrero (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes, and fatty acid profile of marine microalgae Isochrysis galbana. Aquaculture. 166: 105-116 
    29. Kaplan, D., A. E. Richmond, Z. Dubinsky, and S. Aaronson (1986) Algal nutrition. pp. 147-198. In: A. Richmond (eds.). Handbook of Microalgal Mass Culture. CRC Press, Florida, USA 
    30. Zou, N., D. H. Sun, and Y. X. Han (2005) Effects of $CO_2$ on high density culture of Chaeroceros mulleri. Chinese J. Biotechnol. 21: 844-847 
    31. Burns, B. D. and J. Beardall (1987) Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol. Ecol. 107: 75-86 
    32. Kuhl, A. (1974) Phosphorus by phosphorus-sufficient and phosphorus-limited culture. pp. 638-641. In: W. D. P. Stewart (eds.). Algal Physiology and Biochemistry. University of California Press, Oxford, UK 
  • 이 논문을 인용한 문헌 (1)

    1. 2015. "" 한국어업기술학회지 = Journal of the Korean Society of Fisheries Technology, 51(4): 475~483     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기