본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Rhodobacter capsulatus hemA 유전자 발현 대장균에 의한 5-Aminolevulinic Acid 생산의 최적화
Optimizing the Production of 5-Aminolevulinic Acid by Recombinant Escherichia coli Containing the Rhodobacter capsulatus hemA Gene

양동수    ((주)압선비씨엘   ); 박문원    ((주)압선비씨엘   ); 임수진    (단국대학교 동물자원학과   ); 김민정    (단국대학교 동물자원학과   ); 신유리    (단국대학교 동물자원학과   ); 박찬수    ((주)이지바이오시스템   ); 현영    ((주)이지바이오시스템   ); 강대경    (단국대학교 동물자원학과  );
  • 초록

    Rhodobacter capsulatus 유래의 hemA 유전자를 항시발현 벡터(pHCEIIB vector)에 클로닝한 후 과발현시킨 Escherichia coli BLR(DE3) 균주를 사용하여, 5-aminolevulinic acid (ALA) 생산을 위한 적정 배양조건을 조사하였다. ALA 생산을 위한 배양온도는 $37^{\circ}C$ 보다는 $30^{\circ}C$ 에서 더 나은 결과를 나타내었다. Glycine 농도가 세포생장에 미치는 영향이 컸으며, 세포생장을 저해하지 않고ALA를 고농도로 생산하기 위한 적정 glycine 농도는 5-10 g/L 수준이었다. Succinic acid의 적정 첨가수준은 10-20 g/L이었으며, succinic acid의 일부를 glutamate로 대체할 경우에 ALA의 생산량을 향상시키는 효과가 있었다. 한편, 배지 중의 glucose 첨가는 ALA 생산성을 저하시키는 결과를 초래하였다. 이상과 같은 배양 조건 최적화를 통한 jar-fermentor 발효실험을 통하여, 고가의 유도제(IPTG)나 ALA dehydratase inhibitor를 첨가하지 않고도 8.2 g/L 수준의 고농도 ALA를 얻을 수 있었다.


    Recombinant Escherichia coli BLR(DE3) harboring the hemA gene from Rhodobacter capsulatus under the control of a constitutive promoter, which we constructed previously, was used for the extracellular production of 5-aminolevulinic acid (ALA). The effects of several factors on ALA production were investigated in flask culture. ALA production by the recombinant E. coli was more efficient at $30^{\circ}C$ than $37^{\circ}C$ . The glycine concentration had an important effect on cell growth. Glycine and succinic acid concentration of 5-10 and 10-20 g/L, respectively, resulted in high ALA production. In addition, the partial replacement of succinic acid by sodium glutamate increased the ALA production. The ALA production was inhibited by the presence of glucose in the medium. Using the optimal conditions, an ALA concentration of 8.2 g/L was achieved in jar fermentation without an added inducer or ALA dehydratase inhibitor; this is the highest reported concentration.


  • 주제어

    5-Aminolevulinic acid .   recombinant Escherichia coli .   glycine .   succinic acid .   glutamate .   glucose.  

  • 참고문헌 (32)

    1. Avissar, Y. J. and S. I. Beale. 1989. Identification of the enzymatic basis for $\"{a}$-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J. Bacteriol. 171: 2919-2924 
    2. Bykhovsky, V. Y., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin $B_{12}$ biosynthesis. Critical Rev. Biotechnol. 17(1): 21-37 
    3. Chen, Y. J., J. H. Cho, J. S. Yoo, Y. Wang, Y. Huang, I. H. Kim. 2008. Evaluation of a-aminolevulinic acid on serum iron status, blood characteristics, egg performance and quality in laying hens. Asian-Aust. J. Anim. Sci. 21: 1355-1360 
    4. Dempsey, W. B. 1973. Lysis of Escherichia coli by glycine is potentiated by pyridoxine starvation. J. Bacteriol. 116(1): 373-377 
    5. Lee, D.-H., W.-J. Jun, K.-M. Kim, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using Dglucose. Enz. Microbial Technol. 32: 27-34 
    6. Lo, T. C. Y., K. Rayman, and H. D. Sanwal. 1972. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J. Biol. Chem. 247(19): 6323-6331 
    7. Poo, H., J. J. Song, S.-P. Hong, Y.-H. Choi, S. W. Yun, J.-H. Kim, S. C. Lee, S.-G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-aaa. Biotechnol. Lett. 24: 1185-1189 
    8. Rebeiz, C. A., A. Montaxer-Zouhool, H. Hopen, and S, M. Wu. 1984. Photodynamic herbicides. I. Concepts and phenomenology. Enzyme Microb. Technol. 6: 390-401 
    9. Shin, J.-A., Y. D. Kwon, O.-H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17(9): 1579-1584     
    10. Halpern, Y. S., A. Ecen-shoshan, and M. Artman. 1964. Effect of glucose on the utilization of succinate and the activity of tricarboxylic acid-cycle enzymes in Escherichia coli. Biochim Biophys Acta. 93: 228-236 
    11. Kikuchi, G., A. Kumor, P. Talmage, and D. Shemin. 1958. The enzymatic synthesis of a-aminolevulinic acid. J. Biol. Chem. 233: 1214-1219 
    12. Mateo, R. D., J. L. Morrow, J. W. Dailey, F. Ji, S. W. Kim. 2006. Use of delta-aminolevulinic acid in swine diet: effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs. Asian-Aust. J. Anim. Sci. 1: 97-101 
    13. Han, L., M. Doverskog, S. O. Enfors, and L. Haggstrom. 2002. Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by (13)C NMR spectroscopy. J. Biotechnol. 92(3): 237-249 
    14. Nam, T.-W., Y.-H. Park, H.-J. Jeong, S. Ryu, and Y.-J. Seok. 2005. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP·cAMP complex. Nucleic Acids Res. 33(21): 6712-6722 
    15. Sasikala, Ch., Ch. V. Ramana, and P. R. Rao. 1994. 5- Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459 
    16. Choi, C., B.-S. Hong, H.-C. Sung, H.-S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554 
    17. Fu, W., J. Lin, and P. Cen. 2008. Enhancement of 5- aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technol. 99: 4864-4870 
    18. Sasaki, K., M. Watnabe, T. Tanake, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29 
    19. Kang, D.-K., S. S. Kim, W.-J. Chi, S.-K. Hong, H. K. Kim and H. U. Kim. 2004. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the production of 5-aminolevulinic acid. J. Microbiol. Biotechnol. 14(6): 1327-1332     
    20. Hammets, W., K. H. Schleifer, and O. Kandler. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116(2): 1029-1053 
    21. Miyachi, N., T. Tanaka, S. Nishikawa, H. Takeya, and Y. Hotta. 1998. Preparation and chemical properties of 5- aminolevulinic acid and its derivatives. Porphyrins 7: 342-347 
    22. Qin, G., J. Lin, X. Liu, and P. Cen. 2006. Effect of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102(4): 316-322 
    23. Lee, D.-H., W.-J. Jun, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2005. Effect of culture conditions on production of 5- aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69(3): 470-476 
    24. Chung S.-Y., K.-K. Seo, K.A. Han, S. H. Cho, K. H. Bak, and J. I. Rhee. 2004. Production and process monitoring of 5-aminolevulinic acid [ALA] by recombinant E. coli. I. Characteristics of ALA production. Kor. J. Biotech. Bioeng. 19(1): 17-26     
    25. Lee, D.-H., W.-J. Jum, J.-W. Yoon, H.-Y. Cho, and B.-S. Hong. 2004. Process strategies to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biothchnol. 14(6): 1310-1317     
    26. Van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566 
    27. Beale, S. J. and P. A. Castelfranco. 1974. The Biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C$-$\delta$-aminolevulinic acid from labeled precursors in greening plant tissue. Plant Physiol. 53: 297-303 
    28. Ferreira, G. and J. Gong. 1995. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J. Bioenerg. Biomembr. 27: 151-159 
    29. Mauzerall, D and S. Granick, 1956. The occurance and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219(11): 435-446 
    30. Berg, K., P. K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B${\O}$ Engesaeter, E. Angell-Petersen, T. Warloe, N. Frandsen, and A. H$\phi$gset. 2005. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 218: 133-147 
    31. Choi, H.-P., Y.-M. Lee, C.-W. Yun, and H.-C. Sung. 2008. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J. Microbiol. Biotechnol. 18(6): 1136-1140     
    32. Takahashi, Y. 1975. Effect of glucose and cyclic Adenosine 3', 5' monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. J. Biochem. 78(5): 1097-1100 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기