본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1

Jo, Ji-Hye    (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Pohang University of Science and Technology   ); Lee, Dae-Sung    (Department of Environmental Engineering, Kyungpook National University   ); Kim, Jun-Hoon    (Department of Chemical and Biological Engineering, University of Wisconsin-Madison   ); Park, Jong-Moon    (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Pohang University of Science and Technology  );
  • 초록

    The carbon metabolism of newly isolated Clostridium tyrobutyricum JM1 was investigated at varying initial glucose concentrations (27.8-333.6mM). Because an understanding of metabolic regulations was required to provide guidance for further effective metabolic design or optimization, in this case, maximizing hydrogen production, carbon and energy balances by C. tyrobutyricum JM1 were determined and applied in anaerobic glucose metabolism. The overall carbon distribution suggested that initial glucose concentrations had strong influence on the stoichiometric coefficients of products and the molar production of ATP on the formation of biomass. C. tyrobutyricum JM1 had a high capacity for hydrogen production at the initial glucose concentration of 222.4 mM with high concentrations of acetate and butyrate.


  • 주제어

    Clostridium tyrobutyricum .   carbon material balance .   energy balance .   carbon flow distribution .   hydrogen production.  

  • 참고문헌 (38)

    1. Desai, R. P., L. M. Harris, N. E. Welker, and E. T. Papoutsakis. 1999. Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab. Eng. 1: 206-213 
    2. Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 1999. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181:3262-3269 
    3. Jo, J. H., D. S. Lee, D. Park, and J. M. Park. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from food waste treatment process. Bioresource Technol. 99: 6666-6672 
    4. Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29:685-695 
    5. Stephanopoulos, G.., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA 
    6. Payot, S., E. Guedon, C. Cailliez, E. Gelhaye, and H. Petitdemange. 1998. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: Evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144: 375-384 
    7. Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic conditions. J. Environ. Manage. 69: 149-156 
    8. Converti, A. and P. Perego. 2002. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309 
    9. Fabiano, B. and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy 27: 149-156 
    10. Van Ginkel, S., S. Sung, and J. J. Lay. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730 
    11. Khanal, S. K., W. H. Chen, L. Li, and S. W. Sung. 2004. Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrogen Energy 29: 1123-1131 
    12. Stams, A. J. M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenheek 66: 271-294 
    13. Gonz$\acute{a}$lez-Pajuelo, Mar$\acute{i}$a, I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7:329-336 
    14. Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 164: 36-42 
    15. D$\ddot{u}$rre, P. 2005. Handbook on Clostridia. CRC Press, Taylor & Francis Group, Boca Raton, FL 
    16. Jo, J. H., C. O. Jeon, D. S. Lee, and J. M. Park. 2007. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J. Biotechnol. 131: 300-308 
    17. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13-28 
    18. Zeng, A.-P., A. Ross, and W.-D. Deckwer. 1990. A method to estimate the efficiency of oxidative phosphorylation and biomass yield from ATP of a facultative anaerobe in continuous culture. Biotechnol. Bioeng. 36: 965-969 
    19. Oh, Y.-K., S. Park, E.-H. Seol, S. H. Kim, M.-S. Kim, J.-W. Hwang, and D. D. Y. Ryu. 2008. Carbon and Energy Balances of Glucose Fermentation with Hydrogenproducing Bacterium Citrobacter amalonaticus Y19. J. Microbiol. Biotechnol. 18: 532-538     
    20. Berrios-Rivera, S. J., Y.-T. Yang, G. N. Bennett, and K.-Y. San. 2000. Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli. Metab. Eng. 2: 149-154 
    21. Levin, D. B., L. Pitt, and M. Love. 2004. Biohydrogen production prospects and limitations to practical application. Int. J. Hydrogen Energy 29: 173-185 
    22. Nicolet, Y., C. Cavazza, and J. C. Fontecilla-Camps. 2002. Fe-only hydrogenases: Structure, function and evolution. J. Inorganic Biochem. 91: 1-8 
    23. Chen, X., Y. Sun, Z. Xiu, X. Li, and D. Zhang. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549 
    24. Pierik, A. J., M. Hulstein, W. R. Hagen, and S. P. Albracht. 1998. A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in Fe-hydrogenase. Eur. J. Biochem. 258: 572-578 
    25. Angenent, L. T., K. Karim, M. H. Al-Dahhan, and R. Dom$\acute{i}$
    26. Converti, A., P. Perego, and M. Del Borghi. 2003. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics:Carbon and reduction degree balances in batch cultivations. Biotechnol. Bioeng. 82: 370-377 
    27. Desvaux, Micka$\ddot{e}$l., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470 
    28. Zeng, A.-P., H. Biebl, H. Schlieker, and W.-D. Deckwer. 1993. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme Microb. Technol. 15: 770-779 
    29. Balows, A., H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). 1992. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed. NY Springer-Verlag, New York 
    30. Das, D., T. Dutta, K. Nath, S. M. Kotay, A. K. Das, and T. N. Veziroglu. 2006. Role of Fe-hydrogenase in biological hydrogen production. Curr. Sci. India 90: 1627-1637 
    31. Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77: 694-698 
    32. Hallenbeck, P. C. 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52: 21-29 
    33. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68:269-278 
    34. Dunn, S. 2002. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27: 235-264 
    35. Zhu, Y. and S.-T. Yang. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol. 110: 143-157 
    36. Kapdan, I. K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582 
    37. Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529 
    38. Jo, J. H., D. S. Lee, and J. M. Park. 2008. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technol. 99:8485-8491 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기