본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가
Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds

조완근    (경북대학교 환경공학과   ); 신명희    (경북대학교 환경공학과  );
  • 초록

    본 연구는 가시광선 조건에서 질소 및 황 도핑 $TiO_2$ 를 활용하여 악취유발 황화유기화합물질의 분해능을 평가하고, 광촉매 분해시 발생하는 촉매 비활성화와 비활성화된 촉매의 재생에 대해 조사하였다. 적외선 분광법을 이용하여 촉매 표면의 특성을 조사하였다. 가시광선을 이용한 광촉매 기술이 낮은 농도의 황화 이메틸(0.039 ppm)과 이황화 이메틸 (0.027 ppm)은 97% 이상의 높은 효율로 처리할 수 있으나, 촉매 비활성으로 인해 높은 농도(황화 이메틸, 7.8 ppm 및 이황화 이메틸, 5.4 ppm)에 대해서는 광촉매 공정 시간 5시간만에 처리 효율이 황화 이메틸은 84% 그리고 이황화 이메틸은 23%까지 매우 낮게 나타났다. 황화 이메틸에 비하여 황 원소가 하나 더 결합된 이황화 이메틸의 광촉매 분해시 촉매가 빠르게 비활성화되었다. 높은 유입 농도 조건에서 이황화 이메틸 또는 황화 이메틸의 광촉매 반응기의 출구 농도가 유 입농도와 비슷하거나, $CO_2$ 의 생성률이 제로에 가깝거나, FTIR 스펙트럼 상에서 촉매 표면의 비활성을 유발하는 황 이온 화합물의 피크들이 강하게 나타나, 촉매의 비활성화를 확인하였다. 광촉매 반응기의 유출구에서의 최대 $CO_2$ 농도인 8 ppm에 대해서 황화 이메틸의 광물화 효율을 계산한 결과 144%로서 100%를 초과한 것으로 나타났다. 건조-공기 및 습윤-공기 재생 방법에 비해 고온 소성에 의한 촉매의 재생효율이 높게(이황화 이메틸, 53% 그리고 황화 이메틸, 58%) 나타났으나, 이 또한 촉매 비활성을 유발시키는 황 이온 화합물과 같은 부산물들을 완전히 제거되지는 못하는 것으로 확인되었다.


    This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.


  • 주제어

    가시광선 조사 .   건조 공기 재생 .   습윤 공기 재생 .   소성 .   황화유기화합물질.  

  • 참고문헌 (36)

    1. Bouzaza, A., Vallet, C., and Laplanche, A., “Photocatalytic degradation of some VOCs in the gas phase using an annular reactor: Determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process,”J. Photochem. Photobiol. A., 177, 212-217(2006) 
    2. Kim, K-H., Jeon, E-C., Koo, Y-S., Im, M-S., Youn, and Y-H., “An on-line analysis of reduced sulfur gases in the ambient air surrounding a large industrial complex,”Atmos. Environ., 41, 3829-3840(2007) 
    3. Jacoby, W. A., Blake, D. M., Fennell, J. A., Boulter, J. E., Vargo L. M., and George, M. C., “Heterogeneous photocatalysis for control of volatile organic compounds in indoor air,”J. Air Waste Manage. Assoc., 46, 891-898(1996) 
    4. Nosaka Y., Matsushita M., Nishino J., and Nosaka A. Y., “Nitrogen- enhanced titanium dioxide photocatalysts for visible response prepared by using organic compounds,”Sci. Technol. Adv. Mat., 6, 143-148(2005) 
    5. Coronado, J. M., Zorn, M. E., Tejedor-Tejedor, I., and Anderson, M. A.,“ Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor,”Appl. Catal. B., 43, 329-344(2003) 
    6. Vorontsov, A. V., Savinov, E. N., Lion, C., and Smirniotis, P. G., “$TiO_{2}$ reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor,”Appl. Catal. B., 44, 25-40(2003) 
    7. Wei, F., Ni, L., and Cui, P.,“ Preparation and characterization of N-S-codoped $TiO_{2}$ photocatalyst and its photocatalytic activity,” J. Hazard. Mater., 156, 135-140(2008) 
    8. Yu, K. P., Lee, G. W. M., Huang, W. M., Wu, C., and Yang, S., “The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds,”Atmos. Environ., 40, 375-385(2006) 
    9. Obee, T. N., and Brown, R. T., “$TiO_{2}$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,”Environ. Sci. Technol., 29, 1223-1231(1995) 
    10. Kim, K-H., Swan, H., Shon, Z-H., Lee, G., Kim, J., and Kang, C. H., “Monitoring of reduced sulfur compounds in the atmosphere of Gosan, Jeju Island during the Spring of 2001,” Chemosphere., 54, 515-526(2004) 
    11. Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M. T., and Lacombe, S., “Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization,”Catal. Today., 122, 27-38(2007) 
    12. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., “Visible-light photocatalysis in nitrogen-enhanced titanium oxides,”Science., 293, 269-271(2001) 
    13. 환경부, 악취방지법, (2008) 
    14. Van Gerven, T., Mul, G., Moulijn, J., and Stankiewicz, A., “A review of intensification of photocatalytic processes,”Chem. Eng. Prog., 46, 781-789(2007) 
    15. Soler-Illia, G. J. A. A., Louis, A., and Sanchez, C., “Synthesis and Characterization of mesostructured titania-based materials through evaporation-induced self-assembly,”Chem. Mater., 14, 750-759(2002) 
    16. Hunter, P., and Oyama, S. T., Control of Volatile Organic Compound Emissions: Conventional and Emerging Technologies. John Wiley & Sons Inc., New York, p. 279(2000) 
    17. Peral, J., and Ollis, J., “TiO2 photocatalyst deactivation by gas phase oxidation of heteroatom organics,”J. Mol. Catal., 115, 347-354(1997) 
    18. Yang, R., Zhang, Y., Xu, Q., and Mo, J., “A mass transfer method for measuring the reaction coefficients of a photocatalyst,”Atmos. Environ., 41, 1221-1229(2007) 
    19. Demeestere, K., Dewulf, J., Witte, B. D., and Langenhove, H. V., “Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways,”Appl. Catal. B., 60, 93-106(2005) 
    20. Bordado, J. C. M., and Gomes, J. F. P.,“ Characterization of noncondensable sulphur containing gases from Kraft pulp mills,” Chemosphere., 44, 1011-1016(2001) 
    21. Yu, H., Zhang, K., and Rossi, C., “Theoretical study on photocatalytic oxidation of VOCs using nano-$TiO_{2}$ photocatalyst,”J. Photochem. Photobiol. A., 188, 65-73(2007) 
    22. Zhao, J., and Yang, X., “Photocatalytic oxidation for indoor air purification: a literature review,”Build. Environ., 38, 645-654(2003) 
    23. Gonz$\'{a}$lez-Garc$\'{\i}$a, N., Ayll$\'{o}$n, J. A., Dom$\'{e}$nech, X., and Peral, J., “$TiO_{2}$ deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide,”Appl. Catal. B., 52, 69-77(2004) 
    24. Noguchi, T., Fujishima, A., Sawunytama, P., and Hashimoto, K., “Photocatalytic degradation of gaseous formaldehyde using $TiO_{2}$ film,”Environ. Sci. Technol., 32, 3831-3833(1998) 
    25. Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M. N., and Daniele, S., “Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor,”Catal. Today., 122, 160-167(2007) 
    26. Catalan, L. J. J., Liang, V., Walton, C., and Jia, C. Q., “Effects of process changes on concentrations of individual malodorous sulfur compounds in ambient air near a Kraft pulp plant in Thunder bay, Ontario, Canada,”WIT Trans. Ecol. Environ., 101, 437-447(2007) 
    27. Stevens, L., Lanning, J. A., Anderson, L. G., Jacoby, W. A., and Chornet, N., “Investigation of the photocatalytic oxidation of low-level carbonyl compounds,”J. Air Waste Manage. Assoc., 48, 979-984(1998) 
    28. Kim, K-H., Jeon, E-C., Choi, Y-J., and Koo, Y-S., “The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex,”Atmos. Environ., 40, 4478-4490(2006) 
    29. Ou, H-H., and Lo, S-L., “ Photocatalysis of gaseous trichloroethylene (TCE) over $TiO_{2}$: the effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene,”J. Hazard. Mater., 146, 302-308(2007) 
    30. Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., and Matsuzawa, S., “Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide,”Appl. Catal. B., 57, 109-115(2005) 
    31. Mirabelli, M. C., and Wing, S., “Proximity to pulp and paper mills and wheezing symptoms among adolescents in North Carolina,”Environ. Res., 102, 96-100(2006) 
    32. Canela, M. C., Alberici, R. M., Sofia, R. C., Eberlin, M. N., and Jardim, W. F., “Destruction of malodorous compounds using heterogeneous photocatalysis,”Environ. Sci. Technol., 33, 2788-2792(1999) 
    33. Demeestere, K., Dewulf, J., Ohno, T., Salgado, P. H., and Langenhove, H. V., “Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide,”Appl. Catal. B., 61, 140-149(2005) 
    34. Peng, T., Zhao, D., Dai, K., Shi, W., and Hirao, K.,“ Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity,”J. Phys. Chem. B., 109, 4947-4952(2005) 
    35. Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M. T., and Lacombe, S., “Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization,”Catal. Today., 122, 27-38(2007) 
    36. Higashimoto, S., Tanihata, W., Nakagawa, Y., Azuma, M., Ohue, H., and Sakata, Y., “ Effective photocatalytic decomposition of VOC under visible-light irradiation on Nenhanced $TiO_{2}$ modified by vanadium species,”Appl. Catal. A., 340, 98-104(2008) 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 대한환경공학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기