본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Introduction to Industrial Applications of Low Power Design Methodologies

Kim, Hyung-Ock    (Samsung Electronics   ); Lee, Bong-Hyun    (Samsung Electronics   ); Choi, Jung-Yon    (Samsung Electronics   ); Won, Hyo-Sig    (Samsung Electronics   ); Choi, Kyu-Myung    (Samsung Electronics   ); Kim, Hyun-Woo    (Samsung Electronics   ); Lee, Seung-Chul    (Samsung Electronics   ); Hwang, Seung-Ho    (Samsung Electronics  );
  • 초록

    Moore's law has driven silicon technology scale down aggressively, and it results in significant increase of leakage current on nano-meter scale CMOS. Especially, in mobile devices, leakage current has been one of designers' main concerns, and thus many studies have introduced low power methodologies. However, there are few studies to minimize implementation cost in the mixed use of the methodologies to the best of our knowledge. In this paper, we introduce industrial applications of low power design methodologies for the decrease of leakage current. We focus on the design cost reduction of power gating and reverse body bias when used together. Also, we present voltage scale as an alternative to reverse body bias. To sustain gate leakage current, we discuss the adoption of high- $\kappa$ metal gate, which cuts gate leakage current by a factor of 10 in 32 nm CMOS technology. A 45 nm mobile SoC is shown as the case study of the mixed use of low power methodologies.


  • 주제어

    Power gating .   reverse body bias .   high- $\kappa$ metal gate .   low power .   leakage current.  

  • 참고문헌 (18)

    1. K. Roy, S. Mukhopadhyay, and H. Mahmoodi- Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submicronmeter CMOS circuits," IEEE, Vol.92, No.2, pp.305?327, Feb., 2003 
    2. M. Nomura, Y. Ikenaga, K. Takeda, Y. Nakazawa, Y. Aimoto, Y. Hagihara, "Delay and power monitoring schemes for minimizing power consumption by means of supply and threshold voltage control in active and standby modes," IEEE J. Solid-State Circuits, Vol.41, No.4, pp.805?814, Apr., 2006 
    3. S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, "A 1-V power supply high-speed digital circuit technology with multiple threshold-voltage CMOS," IEEE J. Sold-State Circuits, Vol.30, No.8, pp.847?854, Aug., 1995 
    4. S. V. Kosonocky, M. Immediato, P. Cottrell, and T. Hook, "Enhanced multi-threshold (MTCMOS) circuits using variable well bias," in Proc. Int'l Symposium on Low Power Electronics and Design, Aug., 2001, pp.165?169 
    5. T. Chen and S. Naffziger, "Comparison of adaptive body bias (ABB) and adaptive supply voltage (ASV) for improving delay and leakage under the presence of process variation," IEEE Trans. Very Large Scale Integr. (VLSI), Vol.11, No.5, pp.888?899, Oct., 2003 
    6. R. Rao, A. Srivastava, D. Blaauw, and D. Sylbester, "Statistical analysis of subthreshold leakage current for VLSI circuits," IEEE Trans. Very Large Scale Integr. (VLSI), Vol.12, No.2, pp.131?139, Feb., 2004 
    7. G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel et al., "A 45nm 3.5G baseband-and multimedia application processor using adaptive body-bias and ultra-low-power techniques,' in Proc. Int. Solid-State Circuits Conf., Feb., 2008, pp.258?259 
    8. S. Borkar, T. Kamik, S. Narendra, J. Tscanz, A. Keshavarzi, and V. De, "Parameter variations and impact on circuits and microarchitecture," in Proc. Design Automat. Conf., June, 2003, pp.338?342 
    9. S. G. Narendra and A. Chandrakasan, Leakage in nanometer CMOS technologies, New York: Springer-Verlag, 2005 
    10. L. T. Clark, M. Morrow, and W. Brown, 'Reverse-body bias and supply collapse for low effective standby power," IEEE Trans. Very Large Scale Integr. (VLSI), Vol.12, No.9, pp.947?956, Sep., 2004 
    11. L. L. C. Hsu, G. Frankowsky, and O. Wienfurtner, "Dynamic DRAM refresh rate adjustment based on cell leakage monitoring," U.S. patent 6483764 B2, Nov., 2002 
    12. B. Choi and Y. Shin, "Lookup table-based adaptive body biasing of multiple macros," in Proc. Int'l Symposium on Quality Electronic Design, March 2007, pp.533?538 
    13. L. Pileggi, H. Schmit, A. J. Strojwas, P. Gopalakrishnan, V. Kheterpal, A. Koorpaty, C. Patel, V. Rovner, and K. Y. Tong, "Exploring regular fabrics to optimize the performance cost trade-off," in Proc. Design Automat. Conf., June 2003, pp.782?787 
    14. H. F. Jyu, S. Malik, S. Devadas, and K. Keutzer, "Statistical timing analysis of combinational circuits," IEEE Trans. Very Large Scale Integr. (VLSI), Vol.1, No.2, pp.126?137, June, 1993 
    15. J. Jeong, S. Paik, and Y. Shin, "Statistical mixed Vt allocation of body-biased circuits for reduced leakage variation,' in Proc. Asia South Pacific Design Automat. Conf., Jan., 2008, pp.629?634 
    16. H.-O. Kim, Y. Shin, H. Kim, and I. Eo, "Physical design methodology of power gating circuits for standard-cell-based design," in Proc. Design Automat. Conf., July, 2006, pp.109?113 
    17. J.Y. Choi, H.-S. Won, Y. Shin, J. Seomun, and B. Choi, "Lookup table based adaptive body biasing of multiple macros," Korea patent 10-0817058-0000, Mar. 2008 
    18. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, "High-k/Metal-gate stack and its MOSFET characteristics," IEEE Electron Device Letters, Vol.25, No.6, pp.408?410, June, 2004 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기