본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International Journal of CAD/CAM v.8 no.1, 2008년, pp.29 - 36  

Domain Mapping using Nonlinear Finite Element Formulation

Patro, Tangudu Srinivas    (Department of Mechanical Engineering, Indian Institute of Technology   ); Voruganti, Hari K.    (Department of Mechanical Engineering, Indian Institute of Technology   ); Dasgupta, Bhaskar    (Department of Mechanical Engineering, Indian Institute of Technology   ); Basu, Sumit    (Department of Mechanical Engineering, Indian Institute of Technology  );
  • 초록

    Domain mapping is a bijective transformation of one domain to another, usually from a complicated general domain to a chosen convex domain. This is directly useful in many application problems like shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new approach considering the domain as made up of structural elements, like membranes or trusses, is developed and implemented using the nonlinear finite element formulation. The mapping is performed in two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion of this boundary is used as boundary conditions for mapping the interior of the domain in the second stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of material properties and finite element analysis. The consistent global parameterization produced by this method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to accept this finite element structural approach for domain mapping as a good method for many purposes.


  • 주제어

    Domain mapping .   parameterization .   atlas .   finite element method.  

  • 참고문헌 (17)

    1. Suryawanshi, A. B., Joshi, M. B., Dasgupta, B., Biswas, A. (2003), Domain mapping as an expeditionary strategy for fast path planning, Mechanism and Machine Theory 38, 1237-1256 
    2. Alexa, M. (2002), Recent advances in mesh morphing, Computer Graphics Forum 21(2), 173-196 
    3. Floater, M. S. (1997), Parameterization and approximation of surface triangulation, Computer Aided Geometric Design 14(3) 231-250 
    4. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to algorithms, 2nd Edition, MIT Press and McGraw-Hill, 2001 
    5. Klute, G. K., Hannaford, B. (2000), Accounting for elastic energy storage in mckibben artificial muscle actuators, ASME Journal of Dynamic Systems, Measurement and Control 122(2), 368-388 
    6. Grimm, C., Simple manifolds for surface modeling and parametrization, Proceedings of the Shape Modeling International 2002, pp. 237-244 
    7. Khodakovsky, A., Litke, N., Schroder, P. (2003), Globally smooth parameterizations with low distortion, ACM Transactions on Graphics 22(3) 350-357 
    8. Gotsman, C., Gu, X., Sheffer, A., Fundamentals of spherical parameterization for 3-D meshes, Proceedings of ACM SIGGRAPH, 2003, 237-244 
    9. Lorensen, W. E., Cline, H. E. Marching cubes: A high resolution 3-D surface construction algorithm, Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987, 163-169 
    10. Membrane elements, Abaqus theory manual, V 6.4 
    11. Voruganti, H. K., Dasgupta, B., Hommel, G. (2006), Harmonic function based domain mapping method for general domains, WSEAS Transactions on Computers 5 (10) 2495-2502 
    12. Quicken, M., Brechbuhler, C.m Hug, J., Blatmann, H., Szekely, G. Parametrization of closed surfaces for parametric surface description, Proceedings of IEEE Computer Society Conference on Computer Vison and Pattern Recognition, 2000, 354-360 
    13. Kent, J. R., Carson, W. E., Parent, R. E. (1992), Shape transformation for polyhedral objects, Computer Graphics 26(2), 47-54 
    14. Yuan, Y. T., Ching, Y. S. (1994), New algorithms for fixed and elastic geometric transformations models, IEEE Transactions on Image Processing 3(4), 355-366 
    15. Praun, E., Hoppe, H. (2003), Spherical parametrization and remeshing, Proceedings of ACM SIGGRAPH, 340-349 
    16. Sheffer, A., Gotsman, C., Dyn, N. (2004), Robust spherical parameterization of triangular meshes, Computing 72, 185-193 
    17. Ross, C. T. F. Finite element methods in structural mechanics, Ellis Horwood Ltd, 1985 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • Society of CAD/CAM Engineers : 저널
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기