본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

응용통계연구 = The Korean journal of applied statistics v.22 no.6, 2009년, pp.1289 - 1300   피인용횟수: 1

이중표본에서 모비율의 구간추정
Interval Estimation of Population Proportion in a Double Sampling Scheme

이승천    (한신대학교 정보통계학과   ); 최병수    (한성대학교 멀티미디어학과  );
  • 초록

    표본추출 비용의 절감을 위해 흔히 사용되는 이중표본추출방법은 대부분의 표본들이 2종류의 오류에 의해 오염이 되어 있어 통계적 분석이 상대적으로 용이하지 않다. 특히, 비율의 추론을 위한 중요한 분석 도구인 구간추정은 현재까지 우도추정량의 정규근사에 의존하는 Wald 방법만이 알려져 있으나 Wald 신뢰구간은 포함확률의 근사성 등에서 많은 문제가 있다는 것이 여러 연구에서 확인되고 있다. 본 연구에서는 이중표본추출에서 Wald 신뢰구간의 문제점을 파악하고 이에 대한 대안으로 Agresti-Coull 유형의 신뢰구간을 제시한다.


    The double sampling scheme is effective in reducing the sampling cost. However, the doubly sampled data is contaminated by two types of error, namely false-positive and false-negative errors. These would make the statistical analysis more difficult, and it would require more sophisticate analysis tools. For instance, the Wald method for the interval estimation of a proportion would not work well. In fact, it is well known that the Wald confidence interval behaves very poorly in many sampling schemes. In this note, the property of the Wald interval is investigated in terms of the coverage probability and the expected width. An alternative confidence interval based on the Agresti-Coull's approach is recommended.


  • 주제어

    거짓-양성 오류 .   거짓-음성 오류 .   Wald 신뢰구간 .   Agresti-Coull 신뢰구간 .   포함확률.  

  • 참고문헌 (19)

    1. 이승천 (2006). 독립표본에서 두 모비율 차이에 대한 가중 Polya 사후분포 신뢰구간, <응용통계연구>, 19, 171?181 
    2. 이승천 (2007). 베이지안 접근에 의한 모비율 선형함수의 신뢰구간, <응용통계연구>, 20, 257?266     
    3. Agresti, A. and Coull, B. A. (1998). Approximation is better than 'exact' for interval estimation of binomial proportions, American Statistician, 52, 119?126 
    4. Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, American Statistician, 54, 280?288 
    5. Agresti, A. and Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions, Statistics in Medicine, 24, 729?740 
    6. Boese, D. H., Young, D. M. and Stamey, J. D. (2006). Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification, Computational Statistics and Data Analysis, 50, 3369?3385 
    7. Braunstein, G. (2002). False-positive serum human chronic gonadotropin results: causes, characteristics, and recognition, American Journal of Obstetrics & Genecology, 187, 217?224 
    8. Bross, I. (1954). Misclassification in tables, Biomometrics, 10, 478?486 
    9. Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101?133 
    10. Kazemi, N., Dennien, B. and Dan, A. (2001). Mistaken identity: A case of false positive on CT angiography, Journal of Clinical Neuroscience, 9, 464?466 
    11. Lee, S.-C. (2006). Interval estimation of binomial proportions based on weighted Polya posterior, Computational Statistics and Data Analysis, 51, 1012?1021 
    12. Lee, S.-C. (2007). An improved confidence interval for the population proportion in a double sampling scheme subject to false-positive misclassification, Journal of the Korean Statistical Society, 36, 275?284     
    13. Price, R. M. and Bonett, D. G. (2004). An improved confidence interval for a linear function of binomial proportions, Computational Statistics and Data Analysis, 45, 449?456 
    14. Raats, V. M. and Moors, J. J. A. (2003). Double-checking auditors: A Bayesian approach, Statistician, 52, 351?365 
    15. Swaen, V. M., Teggerler, O. and Amelsvoort, L. (2001). False positive outcomes and design characteristics in occupational cancer epidemiology studies, International Journal of Epidemiology, 30, 948?955 
    16. Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data with misclassifications, Journal of the American Statistical Association, 65, 1350?1361 
    17. Tenenbein, A. (1971). A double sampling scheme for estimating from binomial data with misclassifications: sample size determination, Biometrics, 27, 935?944 
    18. Tenenbein, A. (1972). A double sampling scheme for estimating from multinomial data with application to sampling inspection, Technometrics, 14, 187?202 
    19. York, J., Madigan, D., Heuch, I. and Lie, R. T. (1995). Birth defects registered by double sampling: a Bayesian approach incorporating covariates and model uncertainty, Applied. Statistics, 44, 227?242 
  • 이 논문을 인용한 문헌 (1)

    1. Lee, Seung-Chun 2011. "Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data" 한국통계학회 논문집 = Communications of the Korean Statistical Society, 18(4): 445~455     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기