본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Maximum Likelihood Estimation Using Laplace Approximation in Poisson GLMMs

Ha, Il-Do    (Department of Asset Management, Daegu Haany University  );
  • 초록

    Poisson generalized linear mixed models(GLMMs) have been widely used for the analysis of clustered or correlated count data. For the inference marginal likelihood, which is obtained by integrating out random effects is often used. It gives maximum likelihood(ML) estimator, but the integration is usually intractable. In this paper, we propose how to obtain the ML estimator via Laplace approximation based on hierarchical-likelihood (h-likelihood) approach under the Poisson GLMMs. In particular, the h-likelihood avoids the integration itself and gives a statistically efficient procedure for various random-effect models including GLMMs. The proposed method is illustrated using two practical examples and simulation studies.


  • 주제어

    H-likelihood .   laplace approximation .   marginal likelihood .   generalized linear mixed models .   random effects.  

  • 참고문헌 (17)

    1. Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic techniques for use in Statistics, Chapman and Hall, New York 
    2. Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems (with discussion). Statistical Science, 10, 3?66 
    3. Booth, J. G. and Hobert, J. P. (1999). Maximum generalized linear mixed model likelihood with an automated Monte Carlo EM algorithm, Journal of the Royal Statistical Society B, 61, 265?285 
    4. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9?25 
    5. Efron, B. (1996). Empirical Bayes methods for combining likelihoods (with discussion). Journal of the American Statistical Association, 91, 538?565 
    6. Gaver, D. P. and O'Muircheartaigh, I. G. (1987). Robust empirical Bayes analysis of event rates, Technometrics, 29, 1?15 
    7. Gueorguieva, R. (2001). A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family, Statistical Modelling, 1, 177?193 
    8. Ha, I. D., Lee, Y. and Song, J.-K. (2001). Hierarchical likelihood approach for frailty models, Biometrika, 88, 233?243 
    9. Ha, I. D., Lee, Y. and MacKenzie, G. (2007). Model selection for multi-component frailty models, Statistics in Medicine, 26, 4790?4807 
    10. Huber, P., Ronchetti, E. and Victoria-Feser, M.-P. (2004). Estimation of generalized linear latent variable models, Journal of the Royal Statistical Society B, 66, 893?908 
    11. Jiang, J. (2007). Linear and generalized linear mixed models and their applications, Springer, New York 
    12. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion), Journal of the Royal Statistical Society B, 58, 619?678 
    13. Lee, Y. and Nelder, J. A. (2001). Hierarchical generalized linear models: a synthesis of generalized linear models, random-effect models and structured dispersions, Biometrika, 88, 987?1006 
    14. Lee, Y., Nelder, J. A. and Pawitan (2006). Generalized linear models with random effects, Chapman and Hall, New York 
    15. Nelder, J. A. and Wedderburn (1972). Generalized linear models (with discussion), Journal of the Royal Statistical Society A, 135, 370?384 
    16. Shun, Z. (1997). Another look at the salamander mating data: a modified Laplace approximation approach, Journal of the American Statistical Association, 92, 341?349 
    17. Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657?671 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 한국통계학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기