본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

Lee, Geun-Hyung    (Intelligent Systems and Emotional Engineering(ISEE) Lab, BK21 Mechatronics Group, Chungnam National University   ); Jung, Seul    (Intelligent Systems and Emotional Engineering(ISEE) Lab, BK21 Mechatronics Group, Chungnam National University  );
  • 초록

    This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.


  • 주제어

    Neuro-fuzzy controller .   inverted pendulum .   intelligent control education.  

  • 참고문헌 (16)

    1. S. Omatu, T. Fujinaka, and M. Yoshioka, 'Neuro-pid control for inverted single and double pendulums,' IEEE Conf. On Systems, Man, and Cybernetics, pp. 8-11, 2000 
    2. M. E. Magana, and F. Holzapfel, 'Fuzzy-logic control of an inverted pendulum with vision feedback,' IEEE Trans. on Education, vol. 41, no. 2, pp. 165-170, 1998 
    3. S. Pletl, 'Neuro-fuzzy control of rigid and flexible joint robotic manipulator', IEEE IECON, pp. 93-97, 1995 
    4. P. H. Yang, D. M Auslander, and R. N. Dave, 'Real time neuro-fuzzy control of a nonlinear dynamic system', North American Fuzzy Information Processing, pp. 210-214, 1996 
    5. W. Wei, S. Zeng, and X. Gan, 'Fuzzy and neural network control system of intelligent RLED arm manipulators for dynamic obstacles', IEEE Conf. on Fuzzy Systems, pp. 577-580, 2001 
    6. J. S. Wang and C. S. Lee, 'Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle', IEEE Trans. on Robotics and Automations, vol. 19, no. 2, pp. 283-295, 2003 
    7. M. W. Spong, P. Corke, and R. Lozano, 'Nonlinear control of the inertia wheel pendulum', Automatica, vol. 37, pp. 1845-1851, 2001 
    8. M. W. Spong, 'The swing up control problem for the acrobat', IEEE Control Systems Magazine, vol. 15, pp. 72-79, 1995 
    9. J. Shen, A. K. Samyal, N. Chaturvedi, D. Bernstein, and H. McClamroch, 'Dynamics and control of a 3 D pendulum', IEEE Conf. on Decision and Control, 2004 
    10. L. Peng and P. Y. Woo, 'Neural-fuzzy control system for robotic manipulators', IEEE Control Systems Magazine, pp. 53-63, vol. 22, no. 1, 2002 
    11. H. Fer and D. Enns, 'An application of dynamic inversion to stabilization of a triple inverted pendulum on a cart', IEEE Conf. on Control Applications, pp. 708-714, 1996 
    12. F. Cheng, G. Zhong, Y Li, and Z. Xu, 'Fuzzy control of a double inverted pendulum', Fuzzy sets and systems, vol.79, pp. 315-321, 1996 
    13. S. Jung, H. T. Cho, and T. C. Hsia, 'Neural network control for position tracking of a two axis inverted pendulum system: Experimental studies,' IEEE Trans. on Neural Network, vol. 18, no. 4, pp. 1042-1048, 2007 
    14. T. H. Hung, M. F. Yeh, and H. C. Lu, 'A PI-like fuzzy controller implementation for the inverted pendulum system,' Proc. of IEEE Conference on Intelligent Processing Systems, pp. 218-222, 1997 
    15. W. White and R. Fales, 'Control of double inverted pendulum with hydraulic actuation : a case study', Proc. Of the American Control Conference, pp. 495-499, 1999 
    16. S. Jung and S. S. Kim, 'Hardware implementation of a neural network controller with a DSP an FPGA for nonlinear systems', IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 265-271, 2007 
  • 이 논문을 인용한 문헌 (4)

    1. 2010. "" International journal of fuzzy logic and intelligent systems : IJFIS, 10(1): 43~48     
    2. 2014. "" International journal of fuzzy logic and intelligent systems : IJFIS, 14(1): 17~25     
    3. 2014. "" International journal of fuzzy logic and intelligent systems : IJFIS, 14(3): 200~208     
    4. Ha, Minsu ; Jung, Seul 2015. "Balancing Control of a Single-wheel Mobile Robot by Compensation of a Fuzzified Balancing Angle" 한국지능시스템학회 논문지 = Journal of Korean institute of intelligent systems, 25(1): 1~6     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기