본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Intelligent 3D Obstacles Recognition Technique Based on Support Vector Machines for Autonomous Underwater Vehicles

Mi, Zhen-Shu    (Department of Computer Science, Research Institute of Computer and Information Communication, Gyeongsang National University   ); Kim, Yong-Gi    (Department of Computer Science, Research Institute of Computer and Information Communication, Gyeongsang National University  );
  • 초록

    This paper describes a classical algorithm carrying out dynamic 3D obstacle recognition for autonomous underwater vehicles (AUVs), Support Vector Machines (SVMs). SVM is an efficient algorithm that was developed for recognizing 3D object in recent years. A recognition system is designed using Support Vector Machines for applying the capabilities on appearance-based 3D obstacle recognition. All of the test data are taken from OpenGL Simulation. The OpenGL which draws dynamic obstacles environment is used to carry out the experiment for the situation of three-dimension. In order to verify the performance of proposed SVMs, it compares with Back-Propagation algorithm through OpenGL simulation in view of the obstacle recognition accuracy and the time efficiency.


  • 주제어

    SVM .   Obstacle Recognition .   AUV .   BP Algorithm .   OpenGL.  

  • 참고문헌 (14)

    1. Colin Campbell, "Algorithmic Approaches to Training Support Vector Machines: A Survey," 8th European Symposium on Artificial Neural Networks, pp. 27-54, 2000 
    2. H. Murase and S.K. Nayar, "Visual Learning and Recognition of 3-D Object from Appearance," Int. J. Computer Vision, vol. 14, pp. 5-24, 1995 
    3. Vapnik V.n, The Nature of Statistical Learning Theory, Springer-Verlag, New York, pp. 123-171, 1995 
    4. D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, 1995 
    5. Enhui Zheng, Ping Li and Zhihuan Song, "Performance Analysis and Comparison of Neural Network and Support Vector Machines Classifier," Proceeding of the 5th World Congress on Intelligent Control and Automation, pp. 52-58, 2004 
    6. Christopher J.C. Burge, A Tutorial on Support Vector for Pattern Recognition, Neural Network, pp. 1076-1121, 2001 
    7. Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Elsevier Science Publishing, pp. 484-513, 2003 
    8. C.H.Chen, 'A Comparison of Neural Network for Pattern Recognition,' Pattern Recognition 10th International Conference, pp. 121-126, 1990 
    9. Massimiliano Pontil and Alessandro Verri, "Support Vector Machines for 3D Object Recognition," IEEE Transaction on Pattern Recognition and Machine Intelligence, vol. 20, pp. 637-646, 1998 
    10. Arif Reza Anwary, Young-il Lee, Hee Jung and Yong-Gi Kim, "Unsupervised Real-time Obstacle Avodance Technique based on a Hybrid Fuzzy Method for AUVs," International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, pp. 82- 87, 2008     
    11. R.Courant and D. Hilbert, Methods of Mathematical physics, Wildy-Interscience, NewYork, vol. 1, 1953 
    12. V. Blanz, B. Scholkopf, H. Bulthoff, C. Burges, V.N. Vapnik, and T.Vetter, "Comparison of View?Based Object Recognition Algorithms Using Realistic 3D Models," Proc of ICANN'96, LNCS, vol. 1, no. 112, pp. 251-256, 1996 
    13. Licheng Jim, "Application and Realization of Neural Networks," The Publisher of Xian Electron and Science University, 1993 
    14. N.Yoshikawa and Ii Yukie, "Three-Dimensional Object Recognition using Multiplex Complex Amplitude Information with Support Function," Innovative Computing, Information and Control, ICICIC'06 First International conference on vol. 1, pp. 314?317, 2006 
  • 이 논문을 인용한 문헌 (1)

    1. 2013. "" International journal of fuzzy logic and intelligent systems : IJFIS, 13(2): 91~99     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기