본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

수분스트레스 하에 있는 버팔로그래스에서 검출된 무성생식체의 생리학적 조정
Inter-ramet Physiological Integration Detected in Buffalograss(Buchloe dactyloides (Nutt.) Engelm.) under Water Stress

뀐용퀴앙    (베이징 주임업국 임학연구소   ); 이다이엥    (노스다코다대학교 식물학과   ); 한레이    (베이징 주임업국 임학연구소   ); 주관쉥    (베이징 주임업국 임학연구소   ); 류준샹    (베이징 주임업국 임학연구소   ); 위주잉    (베이징 농.임학아카데미 초지연구개발센터   ); 선젠얀    (베이징 주임업국 임학연구소  );
  • 초록

    Buffalograss는 내한, 내서, 그리고 내한발에 우수한 주요 잔디 종 중 하나이다. 다양한 환경에서 buffalograss의 생리학적 조정(integration)을 이해하는 것은 균일한 잔디의 질을 도모하고 경종적 재배방법의 개발에 도움이 된다. 본 연구의 목적은 물 부족의 스트레스 처리에서의 buffalograss의 생리학적 조정과정에서 lipid peroxidation과 산화방지제의 연관성을 평가하였다. 한 실험에서 buffalograss는 네 개의 구분된 칸막이 성장 유닛의 중심에서 재배되었고, 일주일에 한번(+), 일주일에 두 번(-) 관수처리와 모래(S) 또는 피트(P)와를 혼합한 다섯 가지 토양 조합으로 처리하였다(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). 그 결과, 균일하게 혼합된 상토에서 생장한 줄기의 수가 네개의 단일 상토에 정착한 것보다 더 많았다. 두 번째 실험에서는 Hoagland 용액( $S_o$ ), 또는 20% PEG-6000이 함유된 Hoagland용액( $S_s$ ) 안에 하나의 라미트(무성생식체) 혹은 연결된 라마트를 다음과 같은 여러 가지 처리와 비교 실험하였다. 연결된 라미트들의 처리는 Hoagland 용액안의 어린 라미트( $Y_{os}$ )와 20%PEG-6000가 함유된 Hoagland 용액안의 성숙한 라미트( $O_{os}$ ), Hoagland 용액 단독에 성숙한 라미트( $O_{ys}$ ), 20%PEG-6000 함유된 Hoagland 용액안의 어린 라미트( $Y_{ys}$ )였다. Lipid peroxidation, antioxidants, proline은 각기 다른 수분 stress 정도에서 라미트들 간의 생리학적 활성을 보여 주었다. Superoxide dismutase (SOD), Guaiacol peroxidase (G-POD), malondi aldehyde (MDA), free proline의 활성도 처리 후 시간에 따라 상대적인 생리학적 활성을 보였다.


    Buffalograss is an important turfgrass species with excellent cold, heat, and drought tolerance. Understanding the physiological integration of buffalograss under heterogeneous conditions helps to develop cultural practices that better use limited resources for uniform turf quality. The objective of this study was to evaluate physiological integration of buffalograss under water deficit stress and the involvement of lipid peroxidation and antioxidants in the process. In one experiment, buffalograss was planted in the center of a four-compartment growth unit. Watering frequencies, once a week(+) and once in two weeks(-), were combined with the sand(S) or peat(P) in each unit to generate five total treatments(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). The average number of shoot established from the heterogeneous root-zone medium was higher than the average of four possible homogeneous media. In second experiment, single ramet in Hoagland solution( $S_0$ ) or single ramet in Hoagland solution with 20% PEG-6000( $S_s$ ) were compared with two connectedramets under different treatments. Treatments for connected ramets were young ramet in Hoagland solution( $Y_{os}$ ) and old ramet in Hoagland solution with 20% PEG-6000( $O_{os}$ ), and old ramet in Hoagland solution( $O_{ys}$ ) and young ramet in Hoagland solution with 20% PEG-6000( $Y_{ys}$ ). Lipid peroxidation, antioxidants, and proline showedphysiological integration between ramets subjected to different levels of water stress. Superoxide dismutase(SOD), Guaiacol peroxidase(G-POD), malondialdehyde(MDA), and free proline also showed different time courses and relative activities during the physiological integration.


  • 주제어

    산화억제 .   잔디 관리 .   생태 .   지방질과산화.  

  • 참고문헌 (35)

    1. Brian, W.2002. Clonal plants in a spatially heterogeneous environment: effects of integration on Serengeti grassland response to defoliation and urine-hits from grazing mammals. Plant Ecol. 159:15?22 
    2. Doge, A. 1994. Herbicide action and effects on detoxication processes. p. 219-236. In P. Mullineaux and C. Foyer (ed.) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL 
    3. Heath, R.L., L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125:189-198 
    4. Heuer, B. 1994. Osmoregulatory role of proline in water and salt stressed plants. p. 363?381. In M. Pessarakli (ed.) Handbook of Plant and Crop Stress. New York, USA:Marcel Dekker Inc 
    5. Jiang, M., and J. Zhang. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 379:2401-2410 
    6. Kroon, H., B. Fransen, W.A. Rheenen, A. Dijk, and R. Kreulen. 1996. High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labeling. Oecologia 106:73-84 
    7. Marshall, C., and G. Anderson-Taylor. 1992. Mineral nutritional inter-relations amongst stolons and tiller ramets in Agrostis stolonifera L. New Phytol. 122:339? 347 
    8. Sergio, R. Roiloa, and R. Retuerto, 2007. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environ. Exp. Bot. 61:1?9 
    9. Stuefer, J.F., H.J. During,and H. de Kroon. 1994. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J. Ecol. 82:511?518 
    10. Takahashi, M.A., and K. Asada. 1983. Superoxide anion permeability of phospholipids membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226:558-566 
    11. Welham, C., R. Turkington, and C. Sayre. 2002. Morphological plasticity of white clover (Trifolium repens L.) in response to spatial and temporal resource heterogeneity. Oecologia 130:231?238 
    12. Zhang, X., and R. E. Schmidt. 1999. Antioxidant response to hormone-containing product in Kentucky bluegrass subjected to drought. Crop Sci. 39:545?551 
    13. Alpert, P., C. Holzapfel, and J.M. Benson. 2002. Hormonal modification of resource sharing in the clonal plant Fragaria chiloensis. Funct Ecol. 16:191-197 
    14. Bates, L.S., R.P., and T. Waldren. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205-207 
    15. Liu, X., and B. Huang. 2002. Cytokinin effects on creeping bentgrass responses to heat stress II. Antioxidant enzyme activities and lipid peroxidation. Crop Sci. 42:466?472 
    16. Schmid B., and F.A. Bazzaz. 1987. Clonal integration and population structure in perennials: effects of wavering rhizome connections. Ecol. 68:2016-2022 
    17. Giannopolitis, C.N., and S.K. Ries. 1977. Superoxide dismutase I: Occurrence in higher plants. Plant Physiol. 59:309-314 
    18. Hutchings, M.J. 1999. Clonal plants as cooperative systems: benefits in heterogeneous environments. Plant Species Biol. 1:1-10 
    19. Pitelka, L.F., and J.W. Ashmun. 1985. Physiology and integration of ramets in clonal plants. p. 399-435. In J.B.G. Jackson, L.W. Buss, and R.E. Cook (ed.) The Population Biology and Evolution of Clonal Organisms, Yale University Press, New Haven, Connecticut 
    20. Gee, H. 1972. Localization and uptake of $^{14}C-IAA$ in relation to xylem regeneration in coleus internodes. Planta (Berl.) 108:1-9 
    21. Handa, S., A.K. Handa, P.M. Hasegawa, and R.A. Bressan. 1996. Proline accumulation and the adaptation of cultured plant cells to salinity stress. Plant Physiol. 80:938-945 
    22. Qian, Y., Z. Sun, L. Han, and G. Ju. 2008. Physiological integration of photosynthates and changes of endogenous ABA and IAA in the connected ramets of Buchloe dactyloides (Nutt.) ‘texoka’ after supply of water-heterogeneity. p. 388. InOrganizing committee of 2008 IGC/IRC conference (ed.) Multifunctional grasslands in the changing world. GuangzhouPublishing House press, Guangzhou 
    23. Price, E.A.C., and M. J. Hutching. 1992. The causes and developmental effects of integration and independence between different parts of glechoma hedercea clones. Oikos. 63:376-386 
    24. P$\"{u}$tter, J. 1974. Peroxidases. p. 685?690. In H.U. Bergmeyer, (ed.) Methods of Enzymatic Analysis. Academic Press, New York 
    25. Blee, E. 2002. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 7:315-322 
    26. Hellstrom, K., M. Kytoviita, J. Tuomi, and P. Rautio. 2006. Plasticity of clonal integration in the perennial herb Linaria vulgaris after damage. Funct.Ecol. 20:413?420 
    27. Delauney, A.J., and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4:215-223 
    28. Kaitaniemi, P., and T. Honkanen. 1996. Simulating source?sink control of carbon and nutrient translocation in a modular plant. Ecol. Model. 88:227?240 
    29. Hare, P.D., S. Du Plessis, W.A. Cress, and J. Van Staden. 1996. Stress-induced changes in plant gene expression: Prospects for enhancing agricultural productivity in Southern Africa. S. Afr J Sci. 92:431-439 
    30. Alpert, P. and H.A. Mooney. 1986. Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 70:27-233 
    31. Foyer, C.H. 1993. Ascorbic acid. p. 31?58. In R.G. Alscher, and J.L. Hess (ed.) Antioxidants in higher plants. CRC Press, Boca Raton, FL 
    32. Xu. Q., and B. Huang. 2004. Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Sci. 44:553-560 
    33. Marshall, C. 1990. Source-sink relations of interconnected ramets. p. 23?41. In J. van Groenendael, and H. de Kroon (ed.) Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague 
    34. Potter, D.A. 2005. Prospects for managing destructive turfgrass insects without protective chemicals. ITSR 10:42-54 
    35. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 9:405-410 

 저자의 다른 논문

  • 리다이엥 (1)

    1. 2009 "한국들잔디 배아세포의 부유배양과 식물체 재생" 한국잔디학회지 = Korean journal of turfgrass science 23 (2): 345~352    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기