본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Influence of the Francis Turbine location under vortex rope excitation on the Hydraulic System Stability

Alligne, S.    (Laboratory for Hydraulic Machines, EPFL University   ); Nicolet, C.    (Power vision engineering sarl Chemin des champs   ); Allenbach, P.    (Laboratory for Electrical Machines, EPFL University   ); Kawkabani, B.    (Laboratory for Electrical Machines, EPFL University   ); Simond, J.J.    (Laboratory for Electrical Machines, EPFL University   ); Avellan, F.    (Laboratory for Hydraulic Machines, EPFL University  );
  • 초록

    Hydroelectric power plants are known for their ability to cover variations of the consumption in electrical power networks. In order to follow this changing demand, hydraulic machines are subject to off-design operation. In that case, the swirling flow leaving the runner of a Francis turbine may act under given conditions as an excitation source for the whole hydraulic system. In high load operating conditions, vortex rope behaves as an internal energy source which leads to the self excitation of the system. The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes shapes on the system stability. For this, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of the nonlinear set of differential equations in SIMSEN, has been developed. First the modal analysis method and linearization of the set of the nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-acoustic SIMSEN model of a simple hydraulic power plant, is used to apply the modal analysis and to show the influence of the turbine location on system stability. Through this case study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out stability limits and unstable eigenfrequencies.


  • 주제어

    Instability .   Vortex rope .   Eigenvalues .   Viscoelastic damping .   Francis Turbine.  

  • 참고문헌 (17)

    1. Jacob,T., 1994, “Similitude in stability of operation tests for Francis turbine,” Hydropower & Dams, Vol. 1. 
    2. Jacob, T., Prenat, J.E. and Maria, D., 1988, “Comportement dynamique d'une turbine Francis a forte charge comparaison modele prototype”, La houille blanche, Vol. 3, pp. 293-300. 
    3. Jacob, T., Prenat, J.E., Vullioud, G. and Araguas, B.L., 1992, “Surging of 140MW Francis Turbine at high load, analysis and solution,” IAHR Symposium on Hydraulic Machinery and systems, Sao Paolo. 
    4. Koutnik, J. and Pulpitel, L., 1996, “Modelling of the Francis Turbine full load surge,” IAHR Symposium on Hydraulic Machinery and systems, Lausanne. 
    5. Brennen, C. and Acosta, A.J., 1973, “Theoretical, quasi static analysis of cavitation compliance in turbopumps,” Journal Spacecraft, Vol. 10, pp. 175-180. 
    6. Brennen, C. and Acosta, A.J., 1976, “The dynamic transfer function for a cavitating inducer,” Journal of fluids engineering ASME, Vol. 98, pp. 182-191. 
    7. Tsujimoto, Y., Kamijo, K. and Yoshida, Y., 1993, “Theoretical analysis of rotating cavitation in inducers,” Journal of fluids engineering ASME, Vol. 115, pp. 135-141. 
    8. Duttweiller, M. and Brennen, C., 2002, “Surge instability on a cavitating propeller,” Journal of fluids Mechanics, Vol. 458, pp. 133-152. 
    9. Brennen, C. and Watanabe, S., 2003, “Dynamics of a cavitating propeller in a water tunnel,” Journal of fluids engineering, Vol. 125, pp. 283-292. 
    10. Koutnik, J., Nicolet, C., Schohl, G.A. and Avellan, F., 2006, “Overload surge event in a pumped storage power plant,” IAHR Symposium on Hydraulic Machinery and systems, Yokohama. 
    11. Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F. and Tsujimoto, Y., 2007, “One dimensional analysis of full load draft tube surge,” ASME fluids engineering, San Diego. 
    12. Nicolet, C., Greiveldinger, B., Herou, J.J., Kawkabani, B., Allenbach, P., Simond, J.J and Avellan, F., 2007, “High order modeling of Hydraulic Power Plant in Islanded Power Network,” IEEE Transactions of powersystem, Vol 22. 
    13. Kundur, P., 1994, “Power system stability and control,” EPRI. 
    14. Nicolet, C., 2007, “Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems,” Ph. D. Thesis No3751, Laboratory for Hydraulic Machines, Swiss Federal Institute University, Lausanne. 
    15. Wylie, B. and Streeter, V., 1993, “Fluid transients in systems,” E.C Prentice Hall, New Jersey. 
    16. Xianlin, L. and Chu, L., 2007, “Eigenanalysis of Oscillatory Instability of a Hydropower Plant Including Water Conduit Dynamics,” IEEE Transactions on Power Systems, Vol 22(2), pp. 675-681 
    17. Haban, V., Koutnik, J. and Pochyly, F., 2002, “1D mathematical model of high frequency pressure oscillations induced by RSI including an influence of fluid second viscosity,” IAHR Symposium on Hydraulic Machinery and systems, Lausanne. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기