본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Validation Measures of Bicluster Solutions

Lee, Young-Rok    (Department of Industrial and Management Engineering Pohang University of Science and Technology   ); Lee, Jeong-Hwa    (Department of Industrial and Management Engineering Pohang University of Science and Technology   ); Jun, Chi-Hyuck    (Department of Industrial and Management Engineering Pohang University of Science and Technology  );
  • 초록

    Biclustering is a method to extract subsets of objects and features from a dataset which are characterized in some way. In contrast to traditional clustering algorithms which group objects similar in a whole feature set, biclustering methods find groups of objects which have similar values or patterns in some features. Both in clustering and biclustering, validating how much the result is informative or reliable is a very important task. Whereas validation methods of cluster solutions have been studied actively, there are only few measures to validate bicluster solutions. Furthermore, the existing validation methods of bicluster solutions have some critical problems to be used in general cases. In this paper, we review several well-known validation measures for cluster and bicluster solutions and discuss their limitations. Then, we propose several improved validation indices as modified versions of existing ones.


  • 주제어

    Biclustering .   Clustering .   Feature .   Object .   Validation Index.  

  • 참고문헌 (22)

    1. Aguilar-Ruiz, Jes$\acute{u}$s (2005), Shifting and scaling patterns from gene expression data. Bioinformatics, 21, 3840-3845 
    2. Cali$\acute{n}$ski, T., and Harabasz, J. (1974), A dendrite method for cluster analysis. Communications in Statistics-Simulation and Computation, 3, 1-27 
    3. Jain, A. and Dubes, R. (1988), Algorithms for clustering data, Prentice-Hall, Englewood Cliff, NJ 
    4. Santamar$\acute{i}$a, R., Quintales, L., and Ther$\acute{o}$n, R. (2007), Methods to bicluster validation and comparison in microarray data. Lecture Notes in Computer Science:Proceedings of IDEAL'07, 780-789 
    5. Davies, D. and Bouldin, D. (1979), A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227 
    6. Cheng, Y. and Church, G. (2000), Biclustering of expression data. Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 93-103 
    7. Dunn, J. (1973), A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics and Systems, 3, Cybernetics and Systems, 3, 32-57 
    8. Brock, G., Pihur, V., Datta, S., and Datta, S. (2008), clValid, an R package for cluster validation. Journal of Statistical Software, 25, 1-22 
    9. Dice, L. (1945), Measures of the amount of ecologic association between species. Ecology, 26, 297-302 
    10. Turner, H., Bailey, T., and Krzanowski, W. (2005), Improved biclustering of microarray data demonstrated through systematic performance tests. Computational Statistics and Data Analysis, 48, 235-254 
    11. Xu, R. and Wunsch, D., II (2005), Survey of clustering algorithms, IEEE Transactions on Neural Networks, 16, 645-678 
    12. Downton, M. and Brennan, T. (1980), Comparing classifications:an evaluation of several coefficients of partition agreement. Class. Soc. Bull, 4, 53-54 
    13. Hubert, L. and Arabie, P. (1985), Comparing partitions. Journal of Classification, 2, 193-218 
    14. Liu, X. and Wang, L. (2007), Computing the maximum similarity biclusters of gene expression data. Bioinformatics, 23, 50-56 
    15. Rand, W. (1971), Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850 
    16. Yang, Y., Wang, W., Wang, H., and Yu, P. (2002), $\delta$-clusters: capturing subspace correlation in a large data set, Proceedings. 18th International Conference on Data Engineering, 517-528 
    17. Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, NY 
    18. Handl, J., Knowles, J., and Kell, D. (2005), Computational cluster validation in post-genomic data analysis, Bioinformatics, 21, 3201-3212 
    19. Preli$\acute{c}$, A., Bleuler, S., Zimmermann, P.,Wille, A., B$\ddot{u}$hlmann, P., Gruissem, W., Hennig, L., Thiele, L., and Zitzler, E. (2006), A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22, 1122-1129 
    20. Madeira, S. and Oliveira, A. (2004), Biclustering algorithms for biological data analysis: a survey. IEEE /ACM Transactions on Computational Biology and Bioinformatics, 1, 24-45 
    21. Fowlkes, E. and Mallows, C. (1983), A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78, 553-569 
    22. Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001), On clustering validation techniques, Journal of Intelligent Information Systems, 17, 107-145 
  • 이 논문을 인용한 문헌 (1)

    1. 2010. "" Industrial engineering & management systems : an international journal, 9(2): 131~140     

 저자의 다른 논문

  • Lee, Young-Rok (0)

  • Lee, Jeong-Hwa (0)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기