본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

水質保全 = Journal of Korean Society on Water Quality v.26 no.2, 2010년, pp.326 - 331  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

점토성 광물입자의 표면 전기적 거동에 따른 탁도 변화 특성
Characteristics of the Turbidity Change of Clay Particulate Matter according to Its Surface Electrokinetic Behavior

오세진   (이화여자대학교 환경공학과  ); 김동수   (이화여자대학교 환경공학과  );
  • 초록

    Montmorillonite is one of representative inorganic clay particles. As the characteristics of clay particulate matter in aqueous environment determine the efficiencies of wastewater treatment and some industrial operations, it is essential to understand its aquatic behavior in relation with turbidity. The change of electrokinetic potential of montmorillonite suspension shows that it tends to negatively increase as the pH of suspension increases. In addition, it is observed that its potential is around 0mV when the solution pH is ca. 5. The turbidity of suspension is shown to be very low when pH is lower than its isoelectric point. However, the turbidity gradually enhances according to beyond isoelectric point. These results reveal that the correlation between electrokinetic potential and turbidity for clay mineral suspension is peculiar which should be fundamentally considered for systematic treatment of wastewater.


  • 주제어

    Electrokinetic potential .   Isoelectric point .   Montmorillonite .   Turbidity.  

  • 참고문헌 (23)

    1. 문병현, 서규태, 장덕준(2005). 하천에 함유된 부유입자의 특성에 관한 연구. 수질보전 한국물환경학회지, 21(5), pp. 500-504.     
    2. Adamson, A. W. and Gast, A. P. (1997). Physical Chemistry of Surfaces 6th edition, John Wiley and Sons. Inc. 
    3. Benitez, E. I., Genovese, D. B., and Lozano, J. E. (2007). Effect of pH and ionic strength on apple juice turbidity: Application of the extended DLVO theory. Food Hydrocolloids. 21, pp. 100-109. 
    4. Bergaya, F., Theng, B. K. G., and Lagaly, G. (2006). Handbook of Clay Science(First edition) Developments in Clay Science, Elsevier. 
    5. Cadene, A., Durand-Vidal, S., Turq, P., and Brendle, J. (2005). Study of individual Na-montmorillonite particles size, morphology, and apparent charge, Journal of Colloid and Interface Science, 285, pp. 713-730. 
    6. Damonte, M., Sanchez, R. M. T., and Afonso, M. S. (2007). Some aspects of thee glyphosate adsorption on montmorillonite and its calcined form. Applied Clay Science, 36. pp, 86-94. 
    7. Delgado, A., Gonzalez-Caballero, F., and Bruquc, J. M. (1986). On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. Journal of Colloid and Interface Science, 113. pp. 203-211. 
    8. Duran, J. D. G., Ramos-Tejada. M. M., Arroyo, F., and Gonzalez-Caballero, F. (2000). Journal of Colloid and Interface Science, 229. pp. 107-117. 
    9. Ersoy, B. (2005). Effect of pH and polymer charge densuy on settling rate and turbidity of natural stone suspension. International Journal of Mineral Processing, 75. pp. 207-216. 
    10. Garcia-Garcia, S., Wold, S., and Jonsson, M. (2009). Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength. Applied clay chemicals, 43. pp. 21-26. 
    11. Gibson, J. H., Hon. H., Farnood, R., Droppoa, I. G., and Seto, P. (2009). Effects of ultrasound on suspended particles in municipal wastewater. Water Research, 43, pp. 2251-2259. 
    12. Helmy, A. K. (1998). The Limited Swelling of Montmorillonite. Journal of Colloid and Interface Science, 207, pp. 128-129. 
    13. International Organization for Standards (ISO) (1990). International Standard ISO 7207- Water Quality- Determination of Turbidity. 
    14. ltami, K. and Fujitani, H. (2005). Charge characteristics and related dispersion/flocculation behavior of soil colloids as the cause of turbidity. Colloids and Surfaces A: Physico-chem. Eng. Aspects, 265, pp. 55-63. 
    15. Kinsela, A. S., Tjitradjaja, A., Collins. R. N., Waite, T. D., Payne, T. E., Macdonald B. C. T., and White, I. (2010). Influence of calcium and silica on hydraulic properties of sodium montmorillonite assemblages under alkaline conditions, Journal of Colloid and Interface Science, 343(1), pp. 366-373. 
    16. Liang, Y., Hilal, N., Langston, P., and Starov, V. (2007). Interaction forces between colloidal particles in liquid : Theory and experiment. Advances in Colloid and interface Science, 134-135, pp. 151-166. 
    17. Mineral Data Publishing (2001). http://www.handbookofmineralogy.org/ 
    18. Pan, J. R., Huang, C., Jiang, W., and Chen, C. (2005). Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods. Desalination, 179, pp. 31-40. 
    19. Quemada, D. and Berli, D. (2002). Energy of interaction in colloids and its implications in rheological modeling, Advances in Colloid and Interface Science, 98, pp. 51-85. 
    20. Roussy, J., Vooren, M. V., Dempsey, B. A., and Guibal, E. (2005). Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Research, 39, pp. 3247-3258. 
    21. Shaw, D. J. (1992). Introduction to Colloid and Surface Chemistry 4th edition, Butterworth / Heinemann. 
    22. Tombacz, E. and Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied clay chemicals, 27, pp. 75-94. 
    23. Zarzycki, P. and Thomas, F. (2006). Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: Influence of the surface heterogeneity and ionis strength on the potentiometric titration curves. Journal of Colloid and Interface Science, 302, pp. 547-559. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기