본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

전기학회논문지 = The Transactions of the Korean Institute of Electrical Engineers v.59 no.7, 2010년, pp.1320 - 1326   SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계
Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply

박호성   (수원대 산업기술연구소  ); 정윤도   (수원대 산업기술연구소  ); 김현기   (수원대 공대 전기공학과  ); 오성권   (수원대 공대 전기공학과  );
  • 초록

    In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.


  • 주제어

    Granular-based neurocomputing network .   Linear-type superconducting power supply .   Fuzzy c-means clustering method .   Radial basis function neural networks .   Local models .   Receptive fields .   Information granules.  

  • 참고문헌 (17)

    1. D. Srinivasan, C. W. Chan, and P. G. Balaji, "Computational intelligence-based congestion prediction for a dynamic urban street network," Neurocomputing, Vol. 72 pp. 2710-2716, 2009. 
    2. K. B. Kim and S. S. Kim, "A passport recognition and face verification using enhanced fuzzy ART based RBF network and PCA algorithm," Neurocomputing, Vol. 71, pp. 3202-3210, 2008. 
    3. X. Hong, "A fast identification algorithm for Box? Cox transformation based radial basis function neural network," IEEE Trans. Neural Networks, Vol. 17, No.4, pp. 1064-1069, 2006. 
    4. P. Singla, K. Subbarao, and J. L. Junkins, "Direction-dependent learning approach for radial basis function networks," IEEE Trans. Neural Networks, Vol. 18, No. 1, pp. 203-222, 2007. 
    5. I. Myrtveit, E. Stensrud, and M. Shepperd, "Reliability and validity in comparative studies of software prediction models," IEEE Trans. on Software Engineering, Vol. 31, No. 5, pp. 380-391, 2005. 
    6. I. Witten and E. Frank, Data mining: Practical machine learning tools and techniques (2nd ed.), Morgan Kaufmann, San Francisco (2005). 
    7. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006. 
    8. http://www.mathworks.com/access/helpdesk/help/toolbox/nnet. 
    9. J. S. Lee, R. Sankar, "Theoretical derivation of minimum mean square error of RBF based equalizer," Signal Processing, Vol. 87, pp. 1613-1625, 2007. 
    10. M. Shin and A. Goel, "Empirical data modeling in software engineering using radial basis functions," IEEE Trans. Software Engineering, Vol. 26, No. 6, pp. 567-576, 2000. 
    11. G. A. Montazer, R. Sabzevari, H. G. Khatir, "Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system," Neurocomputing, Vol. 71, pp. 167-173, 2007. 
    12. Y. D. Chung, I. Muta, T. Hoshino, and T. Nakamura, "Characteristics of a Persistent Current Compensator for Superconducting NMR Magnets Using Linear Type Magnetic Flux Pump," IEEE Trans. Applied Superconductivity, Vol. 15, No. 2, pp. 1338-1341, 2006. 
    13. A. Oliveira, "Estimation of software project effort with support vector regression," Neurocomputing, Vol. 69, pp. 1749-1753, 2006. 
    14. W. Pedrycz and A. T. Vasilakos, "Computational Intelligence in Telecommunications Networks," CRC Press, 2000. 
    15. Y. D. Chung, T. Hoshino, and T. Nakamura, "Current Pumping Performance of Linear-Type Magnetic Flux Pump With Use of Feedback Control Circuit System," IEEE Trans. Applied Superconductivity, Vol. 16, No. 2, pp. 1638-1641, 2006. 
    16. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981. 
    17. A. Alexandridis, H. Sarimveis, and G. Bafas, "A new algorithm for online structure and parameter adaptation of RBF networks," Neural Networks, Vol. 16, pp. 1003-1017, 2003. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기