본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.20 no.6, 2010년, pp.995 - 1000   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Expression and Characterization of a Novel Deoxyribose 5-Phosphate Aldolase from Paenibacillus sp. EA001

Kim, Yong-Mo    (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology   ); Choi, Nack-Shick    (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology   ); Kim, Yong-Ook    (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology   ); Son, Dong-Ho    (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology   ); Chang, Young-Hyo    (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology   ); Song, Jae-Jun    (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology   ); Kim, Joong-Su    (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch  );
  • 초록

    A novel deoC gene was identified from Paenibacillus sp. EA001 isolated from soil. The gene had an open reading frame (ORF) of 663 base pairs encoding a protein of 220 amino acids with a molecular mass of 24.5 kDa. The amino acid sequence was 79% identical to that of deoxyribose 5-phosphate aldolase (DERA) from Geobacillus sp. Y412MC10. The deoC gene encoding DERA was cloned into an expression vector and the protein was expressed in Escherichia coli. The recombinant DERA was purified using Ni-NTA affinity chromatography and then characterized. The optimum temperature and pH of the enzyme were $50^{\circ}C$ and 6.0, respectively. The specific activity for the substrate deoxyribose 5-phosphate (DR5P) was $62\;{\mu}mol/min/mg$ . The $K_m$ value for DR5P was determined to be 145 mM with the $k_{cat}$ value of $3.2{\times}10^2/s$ from Lineweaver-Burk plots. The EA001 DERA showed stability toward a high concentration of acetaldehyde (100 mM).


  • 주제어

    Deoxyribose 5-phosphate aldolase .   Paenibacillus sp.   .   acetaldehyde.  

  • 참고문헌 (19)

    1. Barbas III, C. F., Y. F. Wang, and C. H. Wong. 1990. Deoxyribose-5-phosphate aldolase as a synthetic catalyst. J. Am. Chem. Soc. 112: 2013-2014. 
    2. DeSantis, G., J. Liu, D. P. Clark, A. Heine, I. A. Wilson, and C. H. Wong. 2003. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg. Med. Chem. 11: 43-52. 
    3. Feron, G., G. Mauvais, F. Martin, E. Semon, and C. Blin-Per. 2007. Microbial production of 4-hydroxybenzylidine acetone, the direct precursor of raspberry ketone. Lett. Appl. Microbiol. 45: 29-35. 
    4. Greenberg, W. A., A. Varvak, S. R. Hanson, K. Wong, H. Huang, P. Chen, and M. J. Burk. 2004. Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Natl. Acad. Sci. U.S.A. 101: 5788-5793. 
    5. Heine, A., G. DeSantis, J. G. LuZ, M. Mitchell, C. H. Wong, and I. A. Wilson. 2001. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369-374. 
    6. Horinouchi, N., J. Ogawa, T. Sakai, T. Kawano, S. Matsumoto, M. Sasaki, Y. Mikami, and S. Shimizu. 2003. Construction of deoxyriboaldolase-overexpressing Escherichia coli and its application to 2-deoxyribose 5-phosphate synthesis from glucose and acetaldehyde for 2'-deoxyribonucleoside production. Appl. Environ. Microbiol. 69: 3791-3797. 
    7. Jennewein, S., M. Schurmann, M. Wolberg, I. Hilker, R. Luiten, M. Wubbolts, and D. Mink. 2006. Directed evolution of an industrial biocatalyst: 2-Deoxy-D-ribose 5-phosphate aldolase. Biotechnol. J. 1: 537-548. 
    8. Kim, Y. M., Y. H. Chang, N. S. Choi, Y. O. Kim, J. J. Song, and J. S. Kim. 2009. Cloning, expression, and characterization of a new deoxyribose 5-phosphate aldolase from Yersinia sp. EA015. Protein Expr. Purif. 68: 196-200. 
    9. Ogawa, J., K. Saito, T. Sakai, N. Horinouchi, T. Kawano, S. Matsumoto, M. Sasaki, Y. Mikami, and S. Shimizu. 2003. Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2'-deoxyribonucleosides. Biosci. Biotechnol. Biochem. 67: 933-936. 
    10. Sakuraba, H., H. Tsuge, I. Shimoya, R. Kawakami, S. Goda, Y. Kawrabayasi, et al. 2003. The first crystal structure of archaeal aldolase. J. Biol. Chem. 278: 10799-10806. 
    11. Sakuraba, H., K. Yoneda, K. Yoshihara, K. Satoh, R. Kawakami, Y. Uto, et al. 2007. Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy-D-ribose-5-phosphate aldolase. Appl. Environ. Microbiol. 73: 7427-7434. 
    12. Stumpf, P. K. 1947. A colorimetric method for the determination of deoxyribonucleic acid. J. Biol. Chem. 169: 367-371. 
    13. Sukumaran, J. and U. Hanefeld. 2005. Enantioselective C-C bond synthesis catalysed by enzymes. Chem. Soc. Rev. 34: 530-542. 
    14. Takayama, S., G. J. McGraevy, and C. H. Wong. 1997. Microbial aldolases and transketolases: New biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51: 285-310. 
    15. Wong, C. H., E. Garcia-Junceda, L. Chen, O. Blanco, H. J. M. Gijsen, and D. H. Steensma. 1995. Recombinant 2-deoxyribose-5-phosphate aldolase in organic synthesis: Use of sequential two-substrate and three-substrate aldol reactions. J. Am. Chem. Soc. 117: 3333-3339. 
    16. Hoffee, P. 1975. Deoxyribose-5-phosphate aldolase from Salmonella typhimurium. Methods Enzymol. 42: 276-279. 
    17. Han, T. K., Z. Zhu, and M. L. Dao. 2004. Identification, molecular cloning, and sequence analysis of a deoxyribose aldolase in Streptococcus mutans GS-5. Curr. Microbiol. 48: 230-236. 
    18. Heine, A., J. G. Luz, C. H. Wong, and I. A. Wilson. 2004. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 $\AA$ resolution. J. Mol. Biol. 343: 1019-1034. 
    19. Rashid, N., H. Imanaka, T. Fukui, H. Atomi, and T. Imanaka. 2004. Presence of a novel phosphopentamutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Bacteriol. 186: 4185-4191. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기