본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.20 no.6, 2010년, pp.1032 - 1041   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film

Kapri, Anil    (Department of Microbiology, G. B. Pant University of Agriculture and Technology   ); Zaidi, M.G.H.    (Department of Chemistry, G. B. Pant University of Agriculture and Technology   ); Goel, Reeta    (Department of Microbiology, G. B. Pant University of Agriculture and Technology  );
  • 초록

    The comparative influence of two nanoparticles [viz., superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT)] upon the in vitro and in situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium was studied. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in vitro conditions, ${\lambda}$ -max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/ $CH_2$ vibrations, along with introduction of hydroxyl residues in the polymer backbone. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM), which revealed greater dissolution of the film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions, which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

  • 주제어

    SPION .   NBT .   LDPE film .   biodegradation .   FTIR .   TG-DTG-DTA.  

  • 참고문헌 (25)

    1. Albertsson, A. C., C. Barenstedt, and S. Karlsson. 1994. Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym. 45: 97-103. 
    2. Bikiaris, D., J. Aburto, I. Alric, E. Borredon, M. Botev, and C. Betchev. 1999. Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylase and starch. J. Appl. Polym. Sci. 71: 1089-1100. 
    3. Flores, M., N. Colon, O. Rivera, N. Villalba, Y. Baez, D. Quispitupa, J. Avalos, and O. Perales. 2004. A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. Mat. Res. Soc. Symp. Proc. Vol. 820. Materials Research Society. 
    4. Goel, R., M. G. H. Zaidi, R. Soni, K. Lata, and Y. S. Shouche. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegrad. 61: 167-172. 
    5. Kapri, A., M. G. H. Zaidi, A. Satlewal, and R. Goel. 2010. SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int. Biodeter. Biodegrad. 64: 238-244. 
    6. Kapri, A., M. G. H. Zaidi, and R. Goel. 2009. Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf. Proc. 1147: 469-474. 
    7. Keskinen, H., J. M. Makela, M. Aromaa, J. Keskinen, S. Areva, C. V. Teixeira, et al. 2006. Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. Catal. Lett. 111: 3-4. 
    8. Kwpp, L. R. and W. J. Jewell. 1992. Biodegradability of modified plastic films in controlled biological environments. Environ. Technol. 26: 193-198. 
    9. Ling, Y. H., J. J. Qi, X. F. Zou, X. M. Zhao, X. D. Bai, and Q. L. Feng. 2005. Antibacterial material, hydrothermal synthesis, ion-exchange, titanate nanotube. Key Eng. Mater. 280-283: 707-712. 
    10. Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms 10th Ed., pp. 145-147; 227-228 Pearson Education, Inc NJ. 
    11. Matsunaga, T. and M. Okochi. 1995. $TiO_2$-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol. 29: 501. 
    12. Neal, A. L. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371. 
    13. Oka, M., T. Tomioka, K. Tomita, A. Nishino, and S. Ueda. 1994. Inactivation of enveloped viruses by a silver-thiosulfate complex. Metal Based Drugs 1: 511. 
    14. Oloffs, A., C. Crosse-Siestrup, S. Bisson, M. Rinck, R. Rudolvh, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron$(Cleantop{\circledR})$ material. Biomaterials 15: 753-758. 
    15. Orhan, Y. and H. Buyukgungor. 2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 45: 49-55. 
    16. Perez, L., M. Flores, J. Avalos, L. S. Miguel, L. Fonseca, and O. Resto. 2003. Comparative study of the growth curves of B. subtilis, K. pneumoniae, C. xerosis and E. coli bacteria in medium containing nanometric silicon particles. Mat. Res. Soc. Symp. Proc. Vol. 737. Materials Research Society. 
    17. Rana, S. and R. D. K. Misra. 2005. The anti-microbial activity of titania-nickel ferrite composite nanoparticles. J. Miner. Met. Mater. Soc. 57: 65-69. 
    18. Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.     
    19. Soni, R., A. Kapri, M. G. H. Zaidi, and R. Goel. 2009. Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J. Polym. Environ. 17: 233-239. 
    20. Soni, R., S. Kumari, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp. 235-243. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Weinheim, Germany. 
    21. Williams, D. N., S. H. Ehrman, and T. R. P. Holoman. 2006. Evaluation of the microbial growth response to inorganic nanoparticles. J. Nanobiotechnol. 4: 3. 
    22. Hadad, D., S. Geresh, and A. Sivan. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100. 
    23. Negi, H., A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel. 2009. Comparative in-vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int. Biodeter. Biodegrad. 63: 553-558. 
    24. Zaidi, M. G. H., P. L. Sah, S. Alam, and A. K. Rai. 2009. Synthesis of epoxy-ferrite nanocomposites in supercritical carbon dioxide. J. Exp. Nanosci. 4:55-66. 
    25. Sah, A., A. Kapri, M. G. H. Zaidi, H. Negi, and R. Goel. 2010. Implications of fullerene-60 upon in-vitro LDPE biodegradation. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10025     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역



유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기