본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국재료학회지 = Korean journal of materials research v.20 no.6, 2010년, pp.331 - 337  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

Kim, Min-Sung    (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.   ); Kim, Yang-Hee    (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.   ); Park, Ih-Ho    (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.   ); Min, Young-Ki    (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.   ); Seo, Hyung-Seok    (Department of Occupational Therapy, College of Health Sciences, Konyang Univ.   ); Lee, Byong-Taek    (Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang Univ.  );
  • 초록

    A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$ , which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.


  • 주제어

    BCP (biphasic calcium phosphate) .   compressive strength .   PCL (polycaprolactone) .   in-vitro study.  

  • 참고문헌 (25)

    1. V. Karageorgiou and D. Kaplan, Biomaterials, 26, 5474(2005). 
    2. O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet and G.Daculsi, Biomaterials, 19, 133 (1998). 
    3. M. Kim, I. H. Park and B. T. Lee, Kor. J. Mater. Res.,19(12), 680 (2009).     
    4. K. Araki and J. W. Halloran, J. Am. Ceram. Soc., 88(5),1108 (2005). 
    5. A. K. Gain, H. Y. Song and B. T. Lee, Script. Mater., 54,2081 (2006). 
    6. B. T. Lee, K. H. Kim, H. C. Youn and H. Y. Song, J. Amer. Ceram. Soc., 90, 629 (2007). 
    7. J. M. Bouler, M. Trecant, J. Delecrin, J. Royer, N. Passutiand G. J. Daculsi, Biomed. Mater. Res., 32, 603 (1996). 
    8. L. Huang, K. Nagapaudi, R. P. Apkarian and E. L.Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001). 
    9. A. S. Goldstein, G. Zhu, G. E. Morris, R. K. Meslenyi andA. G. Mikos, Tissue Eng., 5, 421 (1999). 
    10. L. L. Hench, ‘Bioceramics’ J. Am. Ceram. Soc., 81(7),1705 (1998). 
    11. W. Suchanek and M. Yoshimura, J. Mater. Res., 13(1),94 (1998). 
    12. H. R. R. Ramay and M. Zhang, Biomaterials, 25, 5171 (2004). 
    13. J. Zhao, L.Y. Guo, X. B. Yang and J. Weng, Appl. Surf. Sci., 255, 2942 (2008). 
    14. B. Liu, P. Lin, Y. Shen and Y. Dong, J. Mater Sci. Mater. Med., 19, 1203 (2008). 
    15. M. Peroglio, L. Gremillard, J. Chevalier, L. Chazeau, C.Gauthier and T. Hamaide, J Europ. Ceram. Soc., 27,2679 (2007). 
    16. X. Miao, D. M. Tan, J. Li, Y. Xiao and R. Crawford,Acta Biomater., 4, 638 (2008). 
    17. H. L. Khor, K. W. Ng, J. T. Schantz, T. -T. Phan, T. C.Lim, S. H. Teoh and D.W. Hutmacher, Mater. Sci. Eng. C, 20, 71 (2002). 
    18. C. S. Ng, S. H. Teoh, T. S. Chung and D. W. Hutmacher,Polymer, 41, 5855 (2000). 
    19. R. S. Bezwada, D. D. Jamiolkowski, I. Y. Lee, V. Agarwal,J. Persivale, S. Trenka-Benthin, M. Erneta, J. Suryadevara, A. Yang and S. Liu, Biomaterials, 16, 1141 (1995). 
    20. P. D. Darney, S. E. Monroe, C. M. Klaisle and A. Alvarado,J. Obstet. Gynecol., 160, 1292 (1989). 
    21. B. T. Lee, M. H. Youn, R. K. Paul, K. H. Lee and H. Y.Song, Mater. Chem. Phys., 104, 249 (2007). 
    22. B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon,B. K. Lee and H. E. Kim, J. Am. Ceram. Soc., 92(4),793 (2009). 
    23. C. Rey, Biomaterials, 11, 13 (1990). 
    24. G. B. Valery, B. Francis, B. Omar, B. Frank, F. Michel,R. K. Nathali, U. Nathalie and M. Philippe, Colloid. Surface B.; 59, 194 (2007). 
    25. W. C Tze, Z. L. Der, Y. W. Sin and S. W. Shoei,Biomaterials, 24, 4655 (2003). 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기