본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Korea-Australia rheology journal v.22 no.2, 2010년, pp.95 - 103   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Three dimensional flow simulation and structural analysis on stiffness of fiber reinforced anisotropic parts

Lee, Doo-Jin    (Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University   ); Kim, Myung-Wook    (Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University   ); Kim, Seong-Yun    (Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University   ); Lee, Seung-Hwan    (Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University   ); Youn, Jae-Ryoun    (Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University  );
  • 초록

    Fiber orientation and micromechanics should be understood for exact prediction of physical properties and deformation of anisotropic composite parts which are generally treated as homogeneous materials for flow simulation and transversely isotropic materials for structural analyses. Fiber orientation has a significant effect on the mechanical properties and final shape of injection-molded parts. Fiber orientations in glass fiber (GF) reinforced PBT composites were observed by using a microtomography (Micro-CT) and the three dimensional CT results agreed with the prediction. Mechanical properties of the anisotropic composites were estimated by coupled three dimensional flow and structural analyses in which the micromechanics and the fiber orientation were considered spontaneously. In order to verify the coupled FE simulation results a theoretical model and a simple Representative Volume Element (RVE) model were employed. The coupled 3D analyses were in good agreement with the experimental data and the simple RVE model predicted higher stiffness than the experiments but lower stiffness than theoretical upper bound.


  • 주제어

    fiber orientation .   micromechanics .   composites .   anisotropic .   3D simulation.  

  • 참고문헌 (27)

    1. Fischer, J. M., 2003, Handbook of molded part shrinkage and warpage, Norwich, NY. 
    2. Foss, P. H., 2004, Coupling of flow simulation and structural analysis for glass-filled thermoplastics, Polym. Compos. 25, 343-354. 
    3. Foster, R. J., P. J. Hine, and I. M. Ward, 2009, Characterisation and modeling of polypropylene/carbon nanofibre nanocomposites, Polymer 50, 4018-4027. 
    4. Kim, S. Y., H. J. Oh, S. H. Kim, C. H. Kim, S. H. Lee, and J. R. Youn, 2008, Prediction of residual stress and viscoelastic deformation of film insert molded parts, Polym. Eng. Sci. 48, 1840-1848. 
    5. Ding, M., A. Odgaard, and I. Hvid, 1999, Accuracy of cancellous bone volume fraction measured by micro-CT scanning, J. Biomech. 32, 323-326. 
    6. Shen, H., S. Nutt, and D. Hull, 2004, Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging, Compo. Sci. Tech. 64, 2113-2120. 
    7. Gogos, C. G. and C-F. Huang, 1986, The process of cavity filling including the fountain flow in injection molding, Polym. Eng. Sci. 26, 1457-1466. 
    8. Patcharaphun, S., B. Zhang, and G. Menning, 2007, Simulation of three-dimensional fiber orientation in weldline areas during push-pull-processing, J. Reinf. Plast. Comp. 26, 977-985. 
    9. Folkes, M. J., 1982, Short fibre reinforced thermoplastics, Resear Studies Press. 
    10. Van Krevelen, D. W., 1990, Properties of polymers, Elsevier, Amsterdam. 
    11. Tandon, G. P. and G. J. Weng, 1984, The Effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polym. Compos. 5, 327-333. 
    12. Gusev, A., H. R. Lusti, and P. J. Hine, 2002, Stiffness and thermal expansion of short fiber composites with fully aligned fibers, Adv. Eng. Mater. 4, 927-931. 
    13. Rosato, Donald V. and Dominick V. Rosato, 1995, Injection molding handbook 2nd ed. 
    14. Kim, S. Y., S. H. Lee, S. J. Baek, and J. R. Youn, 2008, Thermoviscoelastic behavior of film-insert-molded parts prepared under various processing conditions, Macromol. Mater. Eng. 293, 969-978. 
    15. Yoo, K. M., S. W. Lee, D. H. Yoon, Y. E. Cho, J. P. Yu, H. S. Park, and J. R. Youn, 2003, injection molding of vertebral fixed cage implant, Fiber. Polym. 4, 89-96.     
    16. Hwang, C. J. and T. H. Kwon, 2002, A Full 3D Finite Element Analysis of the Powder Injection Molding Filling Process Including Slip Phenomena, Polym. Eng. Sci. 42, 33-50. 
    17. Bernasconi, A., F. Cosmi, and D. Dreossi, 2008, Local anisotropy analysis of injection moulded fibre reinforced polymer composites, Compo. Sci. Tech. 68, 2574-2581. 
    18. Folgar, F. P. and C. L. Tucker, 1984, Orientation behavior of fibers in concentrated suspensions, J. Reinf. Plast. Comp. 3, 98-119. 
    19. Shen, Y. K., P. H. Yeh, and J. S. Wu, 2001, Numerical simulation for thin wall injection molding of fiber-reinforced thermoplastics, Int. Comm. Heat Mass Transfer 28, 1035-1042. 
    20. Chang, R. Y. and W. H. Yang, 2001, Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach, Int. J. Numer. Meth. Fl. 37, 125-148. 
    21. Zhou, H., T. Geng, and D. Li, 2005, Numerical filling simulation of injection molding based on 3D finite element model, J. Reinf. Plast. Comp. 24, 823-830. 
    22. Barbero, E. J., 1998, Introduction to composite materials design, Taylor & Francis Group. 
    23. Bowles, D. E. and S. S. Tompkins, 1989, Prediction of Coefficients of Thermal Expansion for Unidirectional Composites, J. Compos. Mater. 23, 370-388. 
    24. Schapery, R. A., 1968, Thermal expansion coefficients of composite materials based on energy principles, J. Compos. Mater. 2, 380-404. 
    25. Carpenter, B., S. Patil, R. Hoffman, B. Lilly and J. Castro, 2006, Effect of machine compliance on mold deflection during injection and packing of thermoplastic parts, Polym. Eng. Sci. 46, 844-852. 
    26. Sun, C. T. and R. S. Vaidya, 1996, Prediction of composite properties from a representative volume element, Compo. Sci. Tech. 56, 171-179. 
    27. Cox, H. L., 1952, The elasticity and strength of paper and other fibrous materials, British J. Appl. Phy. 3, 72-79. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기