본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Environmental engineering research v.15 no.2, 2010년, pp.71 - 78   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Electricity Generation from MFCs Using Differently Grown Anode-Attached Bacteria

Nam, Joo-Youn    (Department of Civil and Environmental Engineering, The Pennsylvania State University   ); Kim, Hyun-Woo    (Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University   ); Lim, Kyeong-Ho    (Department of Civil and Environmental Engineering, Kongju National University   ); Shin, Hang-Sik    (Department of Civil and Environmental Engineering, KAIST  );
  • 초록

    To understand the effects of acclimation schemes on the formation of anode biofilms, different electrical performances are characterized in this study, with the roles of suspended and attached bacteria in single-chamber microbial fuel cells (MFCs). The results show that the generation of current in single-chamber MFCs is significantly affected by the development of a biofilm matrix on the anode surface containing abundant immobilized microorganisms. The long-term operation with suspended microorganisms was demonstrated to form a dense biofilm matrix that was able to reduce the activation loss in MFCs. Also, a Pt-coated anode was not favorable for the initial or long-term bacterial attachment due to its high hydrophobicity (contact angle = $124^{\circ}$ ), which promotes easy detachment of the biofilm from the anode surface. Maximum power ( $655.0\;mW/m^2$ ) was obtained at a current density of $3,358.8\;mA/m^2$ in the MFCs with longer acclimation periods. It was found that a dense biofilm was able to enhance the charge transfer rates due to the complex development of a biofilm matrix anchoring the electrochemically active microorganisms together on the anode surface. Among the major components of the extracellular polymeric substance, carbohydrates ( $85.7\;mg/m^2_{anode}$ ) and proteins ( $81.0\;mg/m^2_{anode}$ ) in the dense anode biofilm accounted for 17 and 19%, respectively, which are greater than those in the sparse anode biofilm.


  • 주제어

    Anode biofilm .   Electrochemical impedance spectroscopy .   Extracellular polymeric substance .   Power density .   Single-chamber microbial fuel cell.  

  • 이미지/표/수식 (6)

    • Phases of the operational schemes for the three different microbial fuel cell (MFC) sets. PtMFC: Pt-anode sets of the PtMFC.
    • Voltage generation of the duplicate reactors under each set of conditions. The black dots and gray triangles indicate the first and second reactors in the duplicated experiments, respectively. (a) Pt-anode sets of the microbial fuel cell (PtMFC); (b) MFC1; (c) MFC2.
    • Power density curves obtained during (a) Phase II; (b) Phase III. MFC: microbial fuel cell, PtMFC: Pt-anode sets of the PtMFC.
    • Scanning electron microscopy images of (a) control electrode; (b) the anode from microbial fuel cell (MFC) 1-III; (c) the anode from MFC2-III.
    • Nyquist plots obtained during (a) Phase II; (b) Phase III. MFC: microbial fuel cell.Fig. 5. Nyquist plots obtained during (a) Phase II; (b) Phase III. MFC: microbial fuel cell.
    • Extracellular polymeric substance (EPS) concentrations of bacteria attached to the anodes. MFC: microbial fuel cell.

    논문관련 이미지

  • 참고문헌 (28)

    1. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007;25:464-482. 
    2. Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004;38:4040-4046. 
    3. Liu H, Ramnarayanan R, Logan BE. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004;38:2281-2285. 
    4. Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004;38:4900-4904. 
    5. Fan Y, Hu H, Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 2007;171:348-354. 
    6. Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005;39:1675-1686. 
    7. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: Wiley; 1980. 
    8. Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007;41:3341-3346. 
    9. Rosenbaum M, Schroder U, Scholz F. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. J. Solid State Electrochem. 2006;10:872-878. 
    10. Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF. Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. J. Chem. Tech. Biotechnol. Biotechnol. 1984;34B:13-27. 
    11. Kostka JE, Dalton DD, Skelton H, Dollhopf S, Stucki JW. Growth of iron (III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 2002;68:6256-6262. 
    12. Gorby YA, Yanina S, McLean JS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U.S.A. 2006;103:11358-11363. 
    13. Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003;21:1229-1232. 
    14. Rabaey K, Boon N, Denet V, Verhaege M, Hofte M, Verstraete W. Bacteria produce and use redox mediators for electron transfer in microbial fuel cells. Abstr. Paper Am. Chem. Soc. Natl. Meet. 2004;228:U622. 
    15. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004;70:5373-5382. 
    16. Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 2005;68:23-30. 
    17. Rittmann BE, McCarty PL. Environmental biotechnology: principles and applications. Boston: McGraw-Hill; 2001. 
    18. Morgan JW, Forster CF, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res. 1990;24:743-750. 
    19. Cheng S, Liu H, Logan BE. Increased performance of singlechamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006;8:489-494. 
    20. Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 1988;54:1472-1480. 
    21. Chae SR, Ahn YT, Kang ST, Shin HS. Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR). J. Membr. Sci. 2006;280:572-581. 
    22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350-356. 
    23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265-275. 
    24. Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14:512-518. 
    25. Barsoukov E, Macdonald JR. Impedance spectroscopy:theory, experiment, and applications. 2nd ed. Hoboken, NJ: Wiley-Interscience; 2005. 
    26. Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 2007;22:1672-1679. 
    27. Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz FB. High-performance ultrathin solid oxide fuel cells for lowtemperature operation. J. Electrochem. Soc. 2007;154:B20-B24. 
    28. Zhang E, Xu W, Diao G, Shuang C. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J. Power Sources 2006;161:820-825. 
  • 이 논문을 인용한 문헌 (1)

    1. 2013. "" Environmental engineering research, 18(4): 277~281     

 저자의 다른 논문

  • 임경호 (15)

    1. 2000 "금강지류 유역에서의 유출량과 오염부하량의 상관관계 분석" 韓國水資源學會論文集 = Journal of Korea Water Resources Association 33 (5): 527~536    
    2. 2002 "저수지 수질관리를 위한 인공폭기 장치의 최적운전방안" 水質保全 = Journal of Korean Society on Water Quality 18 (3): 261~270    
    3. 2005 "철로 역사 건설에 따른 강우 유출수내 비점오염물질의 동적 EMCs 및 처리방안 연구" 한국철도학회 논문집 = Journal of the Korean Society for Railway 8 (4): 308~313    
    4. 2006 "고속도로 노면유출수의 중금속 유출 특성 및 상관성" 水質保全 = Journal of Korean Society on Water Quality 22 (1): 128~133    
    5. 2006 "포장지역에서의 강우사상별 EMC 산정 및 단순 샘플농도와의 비교" 水質保全 = Journal of Korean Society on Water Quality 22 (1): 104~109    
    6. 2006 "간월호 및 부남호의 유입 오염부하량 산정" 한국습지학회지 = Journal of wetlands research 8 (4): 33~40    
    7. 2007 "수질오염총량관리제하에서 친환경 개발사업을 위한 자연형 비점저감시설의 규모 산정" 한국습지학회지 = Journal of wetlands research 9 (2): 1~8    
    8. 2008 "DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 30 (10): 992~998    
    9. 2008 "Pump Diffusion Mixer에서 압력수량에 따른 응집제 확산분포 특성" 上下水道學會誌 = Journal of Korean Society of Water and Wastewater 22 (1): 65~71    
    10. 2008 "CFD모사 기법을 이용한 Pump Diffusion Mixer내의 응집체 확산분포에 대한 평가" 上下水道學會誌 = Journal of Korean Society of Water and Wastewater 22 (1): 49~63    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 대한환경공학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기