본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

韓國水資源學會論文集 = Journal of Korea Water Resources Association v.43 no.6, 2010년, pp.517 - 524   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

복단면 개수로흐름에서 홍수터 식생의 흐름저항을 반영한 1차원 모형
One-Dimensional Model for Flow Resistance of Floodplain Vegetation in Compound Open-Channel Flow

박문형    (한국건설기술연구원 하천. 해안항만연구실  );
  • 초록

    본 연구에서는 식생이 포설된 홍수터를 포함하는 복단면 개수로 흐름의 수위를 예측하기 위하여 유효 전단응력기법에 근거한 일차원 모형을 제시하였다. 제안된 모형은 주수로와 홍수터 접합부에서 발생하는 운동량 교환효과를 와점성계수 개념을 이용하여 반영할 수 있다. 주수로와 홍수터의 경계에서 발생하는 경계와점성계수는 3차원 레이놀즈 응력 모형을 이용하여 결정하였다. 경계와점성계수의 영향을 파악하기 위하여 민감도분석을 수행하였다. 경계와점성계수의 변화에 대하여 배수곡선의 변화는 크지 않았으나, 홍수터에서 부담하는 유량은 경계와점성계수에 비례하여 증가하였다. 마지막으로 식생된 홍수터의 식생밀도 및 침수비에 따른 경계와점성계수의 변화를 살펴보았다. 계산된 경계와점성계수는 식생밀도와 침수비에 비례하며, 대략 $(2-5){\times}\;10^{-4}$ 정도의 값을 갖는 것으로 나타났다.


    In this study, the 1D apparent shear stress model for vegetated compound open-channel flows was suggested. To consider the effect of momentum exchange between main channel and floodplain, the eddy viscosity concept was used in the present model. The interfacial eddy viscosity in the interface of main channel and floodplain was determined from the 3D Reynolds stress model. The evaluated interfacial eddy viscosity appears to be good agreement with those proposed previously. To investigate the effect of interfacial eddy viscosity, sensitive analysis was carried out. the computed backwater profiles are nearly identical with respect to the value of the interfacial eddy viscosity. However, the discharge conveyed by the floodplain changes is proportional to the interfacial eddy viscosity. Finally, the changes of the interfacial eddy viscosity due to the vegetation density and vegetation height were examined. The computed results of interfacial eddy viscosity are in proportion to the vegetation density and vegetation height, and the interfacial eddy viscosity has a range of $(2-5)\;{\times}\;10^{-4}$ .


  • 주제어

    복단면 개수로 흐름 .   홍수터 식생 .   운동량 교환 .   유효 전단응력 .   경계와점성계수.  

  • 참고문헌 (16)

    1. Bousmar, D., and Zech, Y. (1999). “Momentum transfer for practical flow computation in compound channels.” Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 7, pp. 696-706. 
    2. Cunge, J.A., Holly, F.M. Jr., Verwey, A. (1980). Practical Aspects of Computational River Hydraulics, Pitman Publishing Ltd., London, UK. 
    3. Dunn, C.J. (1996). “Experimental determination of drag coefficients in an open-channel with simulated vegetation.” Master thesis, Department of Civil Engineering, University of Illinoisat Urbana-Champaign, Urbana, IL. 
    4. Ervine, D. A., and Baird, J.I. (1982). “Rating curves for rivers with overbank flow.” Proc., I.C.E., Part II, London, Vol. 73, pp. 465-472. 
    5. Helmio, T. (2002). “Unsteady 1D flow model of compound channel with vegetated floodplains.” Journal of Hydrology, Vol. 269, pp. 89-99. 
    6. Kang, H., and Choi, S.-U. (2005). “3D numerical simulation of compound open-channel flow with vegetated floodplains by Reynolds stress model.” KSCE Journal of Civil Engineering, Vol. 9, No. 1, pp. 7-11. 
    7. Kang, H. (2004). “Reynolds stress modeling of vegetated open-channel flows.” Ph.D. Thesis, Department. of Civil Engineering, Yonsei University, Seoul, Korea. 
    8. Knight, D.W., and Hamed, M.E. (1984). “Boundary shear in symmetrical compound channel.” Journal of the Hydraulics Division, ASCE, Vol. 110, No. 10, pp. 1412-1430. 
    9. Myers, R.C., Lyness, J.F. (1997). “Discharge ratios in smooth and rough compound channels.” Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 3, pp. 182-188. 
    10. Nepf, H.M. (1999). “Drag, turbulence, and diffusion in flow through emergent vegetation.”Water Resources Research, AGU, Vol. 35, No. 2, pp. 479-489. 
    11. Sellin, R.H.J. (1964). “A laboratory investigation into the interaction between the flow in the channel of a river and that over its floodplains.” La Houille Blanche, Vol. 7, pp. 793-802. 
    12. Wormleaton, P.R., Allen, J., and Hadjipanos, P. (1982). “Discharge assessment in compound channel flow.” Journal of the Hydraulics Division, ASCE, Vol. 108, No. 9, pp. 975-994. 
    13. Wormleaton, P.R., and Merrett, D.J. (1990). “An improved method of the calculation for steady uniform flow in prismatic main channel/floodplain sections.” Journal of Hydraulic Research., IAHR, Vol. 28, No. 2, pp. 157-174. 
    14. Yen, B.C. (1984). “Hydraulic of floodplains: Methodology for backwater computation.” Institute of Hydraulic Engineering Reports No. 84/5(HWV053), University of Stuttgart, Germany. 
    15. Yen, B.C., Camacho, R., Kohane, R., and Westrich, B. (1985). “Significance of floodplain in backwater computation.” Proceeding of the 21st IAHR Congress, Melbourne, Australia, Vol. 3, pp. 439-445. 
    16. Yen, C.L., and Overton, D.E. (1973). “Shape effects on resistance in flood-plain channels.” Journal of the Hydraulic Division, ASCE, Vol. 99, No. HY1, pp. 219-238. 
  • 이 논문을 인용한 문헌 (1)

    1. Song, Ju-Il ; Kim, Jong-Woo ; Rim, Chang-Soo ; Yoon, Sei-Eui 2011. "1D Numerical Model for Rivers Flows with Emergent Vegetations on Floodplains and Banks" 韓國水資源學會論文集 = Journal of Korea Water Resources Association, 44(1): 9~22     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기