본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International journal of concrete structures and materials v.4 no.1, 2010년, pp.37 - 43   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

Ghebrab, Tewodros T.    (Dept. of Engineering Technology, Texas Tech University   ); Soroushian, Parviz    (Dept. Civil and Environmental Engineering, Michigan State University  );
  • 초록

    Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.


  • 주제어

    mechanical properties .   hydrated cement paste .   molecular interactions .   capillary porosity .   calcium-silicate-hydrate.  

  • 참고문헌 (18)

    1. Balshin, M. Y. “Relation of Mechanical Properties of Powder Metals and Their Porosity and the Ultimate Properties of Porous Metal-ceramic Materials” Dokl. Akad. Nauk. (SSSR), 67, No. 5, 1949, pp. 831-834. 
    2. Ryshkewitch, R., “Compression Strength of Porous Sintered Alumina and Zirconia,” Journal of American Ceramics Society, Vol. 36, 1953, pp. 65-68. 
    3. Jonsson, B., Wennerstrom, H., Nonat, A., and Cabane B., “Onset of Cohesion in Cement Paste,” Langmuir, Vol. 20, 2004,pp. 6702-6709. 
    4. Plassard, C., Lesniewska, E., Pochard, I., and Nonat, A., “Nanoscale Experimental Investigation of Particle Interactions at the Origin of the Cohesion of Cement,” Langmuir, Vol. 21, 2005, pp. 7263-7270. 
    5. Richardson, I. G., “Tobermorite/Jennite-and Tobermorite/Calcium Hydroxide-Based Models for the Stricter of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, BDicalcium Silicate, Portland Cement, and Blends of Portland Cement With Blast-Furnace Slag, Metakaolin, or Silica Fume,” Journal of Cement Concrete Research, Vol. 34, 2004, pp. 1733-1777. 
    6. Jennings, H. M., “A Model for the Microstructure of Calcium Silicate Hydrate in Cement Paste,” Journal of Cement Concrete Research, Vol. 30, 2000, pp. 101-116. 
    7. Thomas, J. J. and Jennings. H. M., “A Colloidal Interpretation of Chemical Aging of the C-S-H Gel and its Effects on the Properties of Cement Paste,” Journal of Cement Concrete Research, Vol. 36, 2006, pp. 30-38. 
    8. Persson, B. N. J., Sliding Friction: Physical Principles and Applications, Germany: Springer (Nanoscience and Technology), 1998, pp. 54-59. 
    9. Felbeck, D. K. and Atkins, A. G., Strength and Fracture of Engineering Solids, New Jersey, Prentice-Hall, 1984. 
    10. Harutyunyan, V. S., Abovyan, E. S., Monterio, P. J. M., Mkrtchyan, V. P., and Balyan, M. K., “Microstrain Distribution in Calcium Hydroxide Present in the Interfacial Transition Zone,” Journal of Cement Concrete Research, Vol. 30, 2000, pp. 709-713. 
    11. Barker, A. P., “Structural and Mechanical Characterization of Calcium Hydroxide in Set Cement and the Influence of Various Additives,” World Cement. Vol. 15, 1984, pp. 25-28. 
    12. Mindess, S., Young, J. F., and Darwin, D., Concrete, New Jersey: Prentice-Hall, 2003. 
    13. Diamond, S. and Bonen, D., “Microstructure of Hardened Cement Paste - A New Interpretation,” Journal of American Ceramic Society, Vol. 76, 1993, pp. 2993-2999. 
    14. Popov, V. L., “Electronic and Phononic Friction of Solids at Low Temperatures,” Tribology International, Vol. 34, 2001, pp. 277-286. 
    15. Meyer, E., Overney, R. M., Dransfeld, K., and Gyalog, T., Nanoscience: Friction and Rheology on the Nanometer Scale, Singapore: Eurasia Press, 1998. 
    16. Alford, N. M., Groves, G. W. and Double, D. D., “Physical Properties of High Strength Cement Pastes,” Journal of Cement Concrete Research, Vol. 12, 1982, pp. 349-358. 
    17. Ammouche, A., Breysse, D., Hornain, H., Didry, O. and Marchand, J., “A New Image Analysis Technique for the Quantitative Assessment of Microcracks in Cement-Based Materials,” Cement and Concrete Research, Vol. 30, 2000, pp. 25-35. 
    18. Tsukrov, I. and Kachanov, M., “Stress Concentrations and Microfracturing Patterns in a Brittle-Elastic Solid with Interacting Pores of Diverse Shapes,” International Journal of Solid Structures, Vol. 34, 1997, pp. 2887-2904. 
  • 이 논문을 인용한 문헌 (1)

    1. 2011. "" International journal of concrete structures and materials, 5(1): 3~10     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기