본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

콘크리트학회논문집 = Journal of the Korea Concrete Institute v.22 no.3 = no.117, 2010년, pp.345 - 356   피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델
Shear Strength Model for Interior Flat Plate-Column Connections

최경규    (숭실대학교 건축학부   ); 박홍근    (서울대학교 건축학과  );
  • 초록

    직접전단과 불균형모멘트를 재하받는 슬래브-기둥 내부 접합부에 대한 대체설계방법이 개발되었다. 슬래브-기둥 접합부는 뚫림전단파괴에 앞서서 휨균열에 의해서 손상을 받으므로, 이 연구에서는 위험단면의 압축대에서 대부분의 전단저항이 발휘된다고 가정하였다. 뚫림전단강도의 산정을 위하여, 슬래브 휨모멘트와 불균형모멘트에 의해서 유발되는 압축수직응력의 영향을 고려하였다. 압축수직응력과 전단응력 사이의 상관관계를 고려하기 위하여, Rankine의 콘크리트 재료파괴기준을 사용하였다. 제안된 강도모델은 실험 결과와의 비교를 통하여 검증하였다. 검증 결과, 제안된 설계방법은 ACI 318과 Eurocode 2 보다 우수한 강도추정능력을 가지고 있으며 직접전단 또는 직접전단-불균형모멘트 복합하중을 재하받는 슬래브-기둥 접합부의 설계에 사용될 수 있다는 점이 밝혀졌다.


    An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.


  • 주제어

    슬래브-기둥 접합부 .   콘크리트 슬래브 .   직접전단 .   편심전단 .   불균형모멘트.  

  • 참고문헌 (34)

    1. MacGregor, J. G. and Wight, J. K., Reinforced Concrete: Mechanics and Design, Prentice Hall, NJ, 2005, 1132 pp. 
    2. Yitzhaki, D., “Punching Strength of Reinforced Concrete Slabs,” ACI J., 1966, Vol. 63, No. 5, pp. 527-542. 
    3. Long, A. E. and Rankin, G. I. B., “Prediction of the Punching Strength of Conventional Slab-column Specimens,” Proc. Institution Civ. Engrs., Vol. 82, 1987, pp. 327-345. 
    4. Pralong, J., Poinconnement Symetrique Des Plachersdalles, IBK-Bericht Nr., 131, Insitut fur Baustatik und Konstruktion ETH Zurish, 1982. 
    5. Kinnunen, S. and Nylander, H., “Punching of Concrete Slabs without Shear Reinforcement,” Transactions, No. 158, Royal Institute of Technology, Stockholm, 1960, 112 pp. 
    6. Alexander, S. D. B. and Simmonds, S. H., “Ultimate Strength of Slab-Column Connections,” ACI Struct. J., Vol. 84, No. 3, 1987, pp. 255-261. 
    7. Bazant, Z. P. and Cao, Z., “Size Effect in Punching Shear Failure of Slabs,” ACI Struct. J., Vol. 84, No. 1, 1987, pp. 44-53. 
    8. Pan, A. and Moehle, J. P., “Later Displacement Ductility of Reinforced Concrete Flat Plates,” ACI Struct. J., Vol. 86, No. 3, 1989, pp. 250-258. 
    9. Luo, Y. H. and Durrani, A. J., “Equivalent Beam Model for Flat-slab Buildings-Part I: Interior Connections,” ACI Struct. J., Vol. 92, No. 1, 1995, pp. 115-124. 
    10. 최경규, 박홍근, “플랫플레이트-기둥 접합부의 뚫림전단 강도,” 콘크리트학회지, 16권, 2호, 2004, pp. 163-174.     
    11. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), Amerian Concrete Institute, USA, 2008, 473 pp. 
    12. CEB-FIP MC 90, Design of Concrete Structures, CEB-FIPModel-Code 1990, Thomas Telford, 1993, 437 pp. 
    13. BS 8110, Structural Use of Concrete, Part 1, Code of Practice for Design and Construction, British Standards Institution, London, 1997, 172 pp. 
    14. EC 2, Design of Concrete Structures Part I: General Rules and Rules for Buildings, European Committee for Standardization Brussels, 2002, 225 pp. 
    15. FIP 12, Punching of Structural Concrete Slabs, CEB-FIP Task Group, Lausanne, Switzerland; 2001, 314 pp. 
    16. 최경규, 박홍근, “플랫플레이트-기둥 접합부의 뚫림전단 강도,” 콘크리트학회지, 14권, 6호, 2002, pp. 961-972.     
    17. Park, H. and Choi, K., “Improved Strength Model for Interior Flat Plate-column Connections Subject to Unbalanced Moment,” ASCE J. Structural Engrg., Vol. 132, No. 5, 2006, pp. 694-704. 
    18. Tian, Y., Jirsa, J. O., and Bayrak, O., “Nonlinear Modeling of Slab-column Connections under Cyclic Loading,” ACI Struct. J., Vol. 106, No. 1, 2009, pp. 30-38. 
    19. Park, H., Choi, K., and Wight, J. K., “Strain-based Shear Strength Model for Slender Beams without Web Reinforcement,” ACI Struct. J., Vol. 103, No. 6, 2006, pp. 783-793. 
    20. Choi, K., Park, H., and Wight, J. K., “Unified Shear Strength Model for Reinforced Concrete Beams- Part I: Development,” ACI Struct. J., Vol. 104, No. 2, 2007, pp. 142-152. 
    21. Kotsovos, M. D. and Pavlovic, M. N., Ultimate Limit-state Design of Concrete Structures: a New Approach, Thomas Telford, London, 1998. 208 pp. 
    22. Zararis, P. D. and Papadakis, G. C., “Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement,” J. Struct. Engrg., ASCE, Vol. 127, No. 7, 2001, pp. 733-742. 
    23. Jelic, I., Pavlovic, M. N., and Kotsovos, M. D., “A Study of Dowel Action in Reinforced Concrete Beams,” Magazine of Concrete Research, Vol. 51, No. 2, 1999, pp. 131-141. 
    24. Tureyen, A. K. and Frosch, R. J., “Concrete Shear Strength: Another Perspective,” ACI Struct. J., Vol. 100, No. 5, 2003, pp. 609-615. 
    25. Choi, K., Reda Taha, M. M., Park, H., and Maji, A. K., “Punching Shear Strength of Interior Concrete Slab-column Connections Reinforced with Steel Fibers,” Cement and Concrete Composites, Vol. 29, No. 5, 2007, pp. 409-420. 
    26. Chen W. F., Plasticity in Reinforced Concrete, New York, McGraw-Hill, 1982, pp. 204-205. 
    27. Kupfer, H. B., Hildorf, H. K., and Rusch, H., “Behavior of Concrete under Biaxial Stresses,” ACI J., Vol. 66, No. 8, 1969, pp. 656-666. 
    28. CSA A23.3-M04 Technical Ccommittee, Design of Concrete Structures, Canadian Standards Associations, Toronto, Ontario, 2004. 
    29. Manterola, M., “Poinconnement de Ddalles Ssans Aarmature d’effort Ttrenchant,” ComiteEuropeen du Beton (Hrsg.), Dalles, Structures Pplanes, CEB-Bull, Paris, d’Information 1966, 58 pp. 
    30. Farhey, D. N., Adin, M. A., and Yankelevsky, D. Z., “Flat Slab-Column Subassemblages under Lateral Loading,” J. Struct. Engrg., ASCE, Vol. 119, No. 6, 1993, pp. 1903-1916. 
    31. Ramdane, K. E., “Punching Shear of High Performance Concrete Slabs,” Utilization of High Strength/high Performance Concrete, Laboratoire Central des Ponts et Chausees, Paris, Vol. 3, 1996, pp. 1015-1026. 
    32. Marzouk, H. and Hussein, A., “Experimental Investigation on the Behavior of High-strength Concrete Slabs,” ACI Struct. J., Vol. 88, No. 6, 1991, pp. 701-713. 
    33. Regan, P., “Symmetric Punching of Reinforced Concrete Slabs,” Magazine of concrete research, Vol. 38S, 1986, pp. 115-128. 
    34. Morrison, D. G. and Sozen, M. A., “Response of Reinforced Concrete Plate-Column Connections to Dynamic and Static Horizontal Loads,” Civil Engineering Studies, Structural Research Series, No. 490, University of Illinois, Urbana, Apr. 1981. 
  • 이 논문을 인용한 문헌 (2)

    1. Choi, Kyoung-Kyu ; Park, Hong-Gun ; Kim, Hye-Min 2010. "Shear Strength Model for Slab-Column Connections" 콘크리트학회논문집 = Journal of the Korea Concrete Institute, 22(4): 585~593     
    2. Choi, Kyoung-Kyu ; Kim, Sug-Hwan ; Kim, Dong-Hoon ; Park, Hong-Gun 2011. "Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement" 콘크리트학회논문집 = Journal of the Korea Concrete Institute, 23(2): 159~168     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기