본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Interdisciplinary Bio Central v.2 no.2, 2010년, pp.6.1 - 6.5  

Fragment Molecular Orbital Method: Application to Protein-Ligand Binding

Watanabe, Hirofumi    (Graduate School of Engineering, Kobe University   ); Tanaka, Shigenori    (JST-CREST  );
  • 초록

    Fragment molecular orbital (FMO) method provides a novel tool for ab initio calculations of large biomolecules. This method overcomes the size limitation difficulties in conventional molecular orbital methods and has several advantages compared to classical force field approaches. While there are many features in this method, we here focus on explaining the issues related to protein-ligand binding: FMO method provides useful interaction-analysis tools such as IFIE, CAFI and FILM. FMO calculations can provide not only binding energies, which are well correlated with experimental binding affinity, but also QSAR descriptors. In addition, FMO-derived charges improve the descriptions of electrostatic properties and the correlations between docking scores and experimental binding affinities. These calculations can be performed by the ABINIT-MPX program and the calculation results can be visualized by its proper BioStation Viewer. The acceleration of FMO calculations on various computer facilities is ongoing, and we are also developing methods to deal with cytochrome P450, which belongs to the family of drug metabolic enzymes.


  • 주제어

    fragment molecular orbital method .   protein-ligand binding affinity .   QSAR.  

  • 참고문헌 (31)

    1. Amari, S. Aizawa, M., Zhang, J., Fukuzawa, K., Mochizuki, Y., Iwasawa, Y., Nakata, K., Chuman, H. and Nakano T., VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based onthe ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening, J. Chem. Inf. Comput. Sci. 46 (2006) 221-230. 
    2. Fedorov, D. G, Kitaura, K., Li, H., Jensen, J. H. and Gordon, M. S. (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO), J. Comp. Chem. 27 976-985. 
    3. Fischer, B., Fukuzawa, K. and Wenzel, W. (2008) Receptor-specific scoring functions derived from quantum chemical models improve affinity estimates for in-silico drug discovery, Proteins: Struct., Funct., Bioinf. 70 1264-1273. 
    4. Ishikawa, T., Mochizuki, Y., Amari, S., Nakano, T., Tanaka, S. and Tanaka, K. (2008) An application of fragment interaction analysis based on local MP2, Chem. Phys. Lett. 463 189-194. 
    5. Fukuzawa, K., Kitaura, K., Uebayasi, M., Nakata, N., Kaminuma T. and Nakano, T. (2005) Ab initio quantum mechanical study of the binding energies of human estrogen receptor with its ligands: An application of fragment molecular orbital method, J. Comput. Chem. 26 1-10. 
    6. Fukuzawa, K., Mochizuki, Y., Tanaka, S., Kitaura, K., Nakano, T. (2006) Molecular Interactions between Estrogen Receptor and Its Ligand Studied by the ab Initio Fragment Molecular Orbital Method, J. Phys. Chem. B 110 16102-16110. 
    7. Fujitani, H., Tanida, Y., Matsuura, A. (2009) Massively parallel computation of absolute binding free energy with well-equilibrated states, Phys. Rev. E 79 021914. 
    8. Harada, T., Yamagishi, K., Nakano, N., Kitaura, K. and Tokiwa, H. (2008) Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain, Naunyn-Schmiedeberg's Arch. Pharmac. 377 607-615. 
    9. Ishikawa, T., Mochizuki, Y., Nakano, T., Amari, S., Mori, H., Honda, H., Fujita, T., Tokiwa, H., Tanaka, S., Komeiji, Y., Fukuzawa, K., Tanaka, K. and Miyoshi, E. (2006) Fragment molecular orbital calculations on large scale systems containing heavy metal atom, Chem. Phys. Lett. 427 159-165. 
    10. Ishikawa, T., Mochizuki, Y., Amari, S., Nakano, T., Tokiwa, H., Tanaka, S. and Tanaka, K. (2007) Fragment interaction analysis based on local MP2, Theor. Chem. Acc. 118 937-945. 
    11. Ito, M., Fukuzawa, K., Mochizuki, Y., Nakano, T. and Tanaka, S. (2007) Ab Initio Fragment Molecular Orbital Study of Molecular Interactions between Liganded Retinoid X Receptor and Its Coactivator: Roles of Helix 12 in the Coactivator Binding Mechanism, J. Phys. Chem. B 111 3525-3533. 
    12. Ito, M., Fukuzawa, K., Mochizuki, Y., Nakano, T., Tanaka, S. (2008 a) Ab Initio Fragment Molecular Orbital Study of Molecular Interactions between Liganded Retinoid X Receptor and Its Coactivator; Part II: Influence of Mutations in Transcriptional Activation Function 2 Activating Domain Core on the Molecular Interactions, , J. Phys. Chem. A 112 1986-1998. 
    13. Ito, M., Fukuzawa, K., Ishikawa, T., Mochizuki, Y., Nakano, T., Tanaka S. (2008 b) Ab Initio Fragment Molecular Orbital Study of Molecular Interactions in Liganded Retinoid X Receptor: Specification of Residues Associated with Ligand Inducible Information Transmission, , J. Phys. Chem. B. 112 (2008) 12081-12094. 
    14. Kurisaki, I., Fukuzawa, K., Komeiji, Y., Mochizuki, Y., Nakano, T., Imada, J., Chmielewski, A., Rothstein, S. M., Watanabe, H., Tanaka S. (2007) Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method, Biophys. Chem. 130 1-9. 
    15. Li, H., Fedorov, D.G., Nagata, T., Kitaura, K., Jensen, J. H., Gordon M. S. (2010) Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. J. Comp. Chem. 31 778-790. 
    16. Mochizuki, M., Koikegami, S., Nakano, T., Amari S. and Kitaura K. (2004a) Large scale MP2 calculations with fragment molecular orbital scheme, Chem. Phys. Lett. 396, 473-479. 
    17. Mochizuki, Y., Nakano, T., Koikegami, S., Tanimori, S., Abe, Y., Nagashima U. and Kitaura K. (2004b) A parallelized integraldirect second-order Moeller-Plesset perturbation theory method with a fragment molecular orbital scheme, Theor. Chem. Acc. 112 442-452. 
    18. Mochizuki, Y., Fukuzawa, K., Kato, A., Tanaka, S., Kitaura, K. and Nakano, T. (2005) A configuration analysis for fragment interaction, , Chem. Phys. Lett. 410 247-253. 
    19. Mochizuki, Y., Yamashita, K., Murase, T., Nakano, T., Fukuzawa, K., Takematsu, K., Watanabe, H. and Tanaka S. (2008) Large scale FMO-MP2 calculations on a massively parallel-vector computer, Chem. Phys. Lett. 457 396-403. 
    20. Nakano, T., Kaminuma, T., Sato, T., Akiyama, Y., Uebayasi, M. and Kitaura, K. (2000) Fragment molecular orbital method: application to polypeptides. Chem. Phys. Lett. 318 614-618. 
    21. Nakano, T., Kaminuma, T., Sato, T., Fukuzawa, K., Akiyama, Y., Uebayasi and M., Kitaura, K. (2002) Fragment molecular orbital method: use of approximate electrostatic potential, Chem. Phys. Lett. 351 475-480. 
    22. Okiyama, Y., Watanabe, H., Fukuzawa, K., Nakano, T., Mochizuki, Y., Ishikawa, T., Tanaka, S., Ebina K. (2007) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides, Chem. Phys. Lett. 449 329-335. 
    23. Okiyama, Y., Watanabe, H., Fukuzawa, K., Nakano, T., Mochizuki, Y., Ishikawa, T., Ebina, K., Tanaka, S. (2009) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations, Chem. Phys. Lett. 467 417-423. 
    24. Okiyama, Y., Nakano, T., Yamashita, K., Mochizuki, Y., Taguchi, N., Tanaka S. (2010) Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach, Chem. Phys. Lett. 490 84-89. 
    25. Rezac, J., Jurecka, P., Riley, K. E., Cerny, J., Valdes, H., Pluhackova, K., Berka, K.; Rezac, T.; Pitonak, M.; Vondrasek, J.; Hobza, P. (2008) Quantum Chemical Benchmark Energy and Geometry Database for Molecular Clusters and Complex Molecular Systems (www.begdb.com): A Users Manual and Examples, Collect. Czech. Chem. Commun. 73, 1261-1270. 
    26. Szabo, A. and Ostlund, N. S. (1982) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill, New York. 
    27. Yamagishi, K., Yamamoto, K. Yamada S., and H. Tokiwa (2006) Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital-interfragment interaction energy analysis, Chem. Phys. Lett. 420 (2006) 465-468. 
    28. Yoda, T., Sugita, Y., Okamoto, Y. (2004) Comparisons of force fields for proteins by generalized-ensemble simulations, Chem. Phys. Lett. 386 460-467. 
    29. Yoshida, T., Yamagishi, K., Chuman, H. (2008) QSAR Study of Cyclic Urea Type HIV-1 PR Inhibitors Using Ab Initio MO Calculation of Their Complex Structures with HIV-1, QSAR Comb. Sci. 27 694-703. 
    30. Yoshida, T., Fujita, T., Chuman, H., (2009) Novel Quantitative Structure-Activity Studies of HIV-1 Protease Inhibitors of the Cyclic Urea Type Using Descriptors Derived from Molecular Dynamics and Molecular Orbital Calculations, Curr. Comp.- Aided Drug Des. 5 38-55. 
    31. Watanabe, H., Tanaka, S., Okimoto, N., Hasegawa, A., Taiji. M., Tanida Y., Mitsui T., Katsuyama M., Fujitani, H., (2010) Comparison of binding affinity evaluations for FKBP ligands with state-of-the-art computational methods: FMO, QM/MM, MMPB/SA and MP-CAFEE approaches, Chem-Bio Informatics Journal 10 32-45. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • EBSCOhost-Academic Search Premier : 저널

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기