본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

정보처리학회논문지. The KIPS transactions. Part B. Part B v.17B no.3, 2010년, pp.233 - 238   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

저화질 영상 인식을 위한 화질 저하 모델 기반 다중 인식기 결합
Multiple-Classifier Combination based on Image Degradation Model for Low-Quality Image Recognition

류상진    (한동대학교 정보통신공학과   ); 김인중    (한동대학교  );
  • 초록

    본 논문에서는 화질 저하 모델에 기반한 다중 인식기 결합을 이용하여 저화질 영상에 대한 인식 성능을 개선하기 위한 방법을 제안한다. 제안하는 방법은 화질 저하 모델을 이용해 특정 화질에 각각 특화된 복수의 인식기들을 생성한다. 인식 과정에서는 인식기들의 결과를 가중 평균에 의해 결합함으로써 최종 결과를 결정한다. 이 때, 각 인식기의 가중치는 입력 영상의 화질 추정 결과에 따라 동적으로 결정된다. 입력 영상의 화질에 특화된 인식기에는 큰 가중치를, 그렇지 않은 인식기에는 작은 가중치를 지정한다. 그 결과, 입력 영상의 화질 변이에 효과적으로 적응할 수 있다. 뿐만 아니라, 복수의 인식기를 사용하기 때문에 저화질 영상에 대하여 단일 인식 시스템보다 더욱 안정적인 성능을 나타낸다. 제안하는 다중 인식기 결합 방법은 화질을 고려하지 않은 다중 인식기 결합 방법이나, 화질을 고려한 단일 인식 방법과 비교하여 더 높은 인식률을 보였다.


    In this paper, we propose a multiple classifier combination method based on image degradation modeling to improve recognition performance on low-quality images. Using an image degradation model, it generates a set of classifiers each of which is specialized for a specific image quality. In recognition, it combines the results of the recognizers by weighted averaging to decide the final result. At this time, the weight of each recognizer is dynamically decided from the estimated quality of the input image. It assigns large weight to the recognizer specialized to the estimated quality of the input image, but small weight to other recognizers. As the result, it can effectively adapt to image quality variation. Moreover, being a multiple-classifier system, it shows more reliable performance then the single-classifier system on low-quality images. In the experiment, the proposed multiple-classifier combination method achieved higher recognition rate than multiple-classifier combination systems not considering the image quality or single classifier systems considering the image quality.


  • 주제어

    저화질 영상 인식 .   다중 인식기 조합 .   화질 저하 모델 .   문자 인식.  

  • 참고문헌 (16)

    1. S. C. Park, M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: a technical overview," Signal Processing Magazine, IEEE, Vol.20, No.3, pp.21-36, 2003. 
    2. T. Boult and G. Wolberg. "Local Image Reconstruction And Sub-Pixel Restoration Algorithms," CVGIP: Graphical Models and Image Processing, Vol.55, pp.63-77, Jan 1993. 
    3. H. Ishida, S. Yanadume, T. Takahashi, I. Ide, Y. Mekada and H. Murase. "Recognition of low-resolution characters by a generative learning method," Pattern Recognition Vol.41, Issue 7, pp.2253-2262, 2008. 
    4. S. Omachi, F. Sun, and H. Aso. "Precise Recognition of Blurred Chinese Characters by Considering Change in Distribution," IEEE TPAMI, Vol.22, No.3, pp.314-319, 2000. 
    5. C. Liu, C. Wang, and R. Dai. "Low Resolution Character Recognition by Image Quality Evaluation," Proc. of ICPR2006, pp.864-867, Hongkong, 2006. 
    6. L. Xu, A. Krzyzak, and C. Y. Suen, Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Transaction on Systems, Man, and Cybernetics, Vol.22, No.3, pp.418-435, 1992. 
    7. C. L. Liu, "Normalization-Cooperated Gradient Feature Extraction for Handwritten Character Recognition," IEEE TPAMI, Vol.29, No.8, pp.1465-1469, 2007. 
    8. M. Chiang, T. Boult. "Local Blur Estimation and Super-Resolution," proc. of CVPR1997, pp.821-826, 1997. 
    9. http://people.csail.mit.edu/hasinoff/320/sliding-notes.pdf 
    10. T.G. Ditterich, "Ensemble methods in machine learning, Multiple Classifier Systems," LNCS, Vol.1857, pp.1-15, Springer, 2000. 
    11. KAIST 인공지능 연구실 홈페이지(http://ai.kaist.ac.kr/Resource/ dbase/Image%20Database.htm#HangulCharacter) 
    12. R.O. Duda, P.E. Hart and D.G. Stork, "Pattern Classification 2nd ed.," pp.36-45, Wiley-Interscience, 2001. 
    13. http://en.wikipedia.org/wiki/Multilayer_perceptron 
    14. C. L. Liu, I. J. Kim, and J. H. Kim, "High Accuracy Handwritten Chinese Character Recognition by Improved Feature Matching Method," Proc. 4th ICDAR, Ulm, Germany, pp.1033-1037, 1997. 
    15. C. L. Liu, "Normalization-Cooperated Gradient Feature Extraction for Handwritten Character Recognition," IEEE TPAMI, Vol.29, No.8, pp.1465-1469. 2007. 
    16. A. F. R. Rahman, H. Alam and M. C. Fairhurst, Multiple Classifier Combination for Character Recognition: Revisiting the Majority Voting System and Its Variations, LNCS Vol. 2423, pp.167-178, 2002. 
  • 이 논문을 인용한 문헌 (1)

    1. Park, Gyu-Ro ; Kim, In-Jung 2010. "Example-based Super Resolution Text Image Reconstruction Using Image Observation Model" 정보처리학회논문지. The KIPS transactions. Part B. Part B, b17(4): 295~302     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기