본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.20 no.3, 2010년, pp.542 - 549   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

Shin, Eun-Jung    (Department of Biomaterial Control, Dong-Eui University   ); Lee, Jin-Woo    (Department of Biomaterial Control, Dong-Eui University   ); Kim, Jeong-Hwan    (Department of Biomaterial Control, Dong-Eui University   ); Jeon, Sung-Jong    (Department of Biomaterial Control, Dong-Eui University   ); Kim, Yeon-Hee    (Department of Biomaterial Control, Dong-Eui University   ); Nam, Soo-Wan    (Department of Biomaterial Control, Dong-Eui University  );
  • 초록

    In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$ -subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$ , respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

  • 주제어

    Chaperonin .   Aeropyrum pernix .   ATPase activity .   citrate synthase .   alcohol dehydrogenase .   malate dehydrogenase .   pro-carboxypeptidase B.  

  • 참고문헌 (37)

    1. Andra, S., G. Frey, M. Nitsch, W. Baumeister, and K. O. Stetter. 1996. Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri. FEBS Lett. 379: 127-131. 
    2. Andra, S., G. Frey, R. Jaenicke, and K. O. Stetter. 1998. The thermosome from Methanopyrus kandleri possesses an $NH_{4}^{+}$-dependent ATPase activity. Eur. J. Biochem. 255: 93-99. 
    3. Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, et al. 1996. Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273: 1058-1073. 
    4. Chang, Z., T. Primm, J. Jakana, I. H. Lee, I. Serysheva, W. Chiu, H. F. Gilbert, and F. A. Cuiocho. 1996. Mycobacterium tuberculosis 16-kDa antigen (Hsp 16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271: 7218-7223. 
    5. Furutani, M., T. Iida, T. Yoshida, and T. Maruyama. 1998. Group II chaperonin in a thermophilic methanogen Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273: 28399-28407. 
    6. Isumi, M., S. Fuiwara, M. Takagi, S. Kanaya, and T. Imanaka. 1999. Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: Analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65: 1801-1805. 
    7. Kim, S., K. R. Willson, and A. L. Horwich. 1994. Cytosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543-548. 
    8. Kohda, J., Y. Endo, N. Okumura, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, H. Fukuda, and A. Kondo. 2002. Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. Biochem. Eng. J. 10: 39-45. 
    9. Kubota, H., G. Hynes, and K. Willson. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1) multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3-16. 
    10. Mayhew, M., A. C. da Silva, J. Martin, H. Erdjument-Bromage, P. Tempst, and F. U. Hartl. 1996. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426. 
    11. Buchner, J., M. Schmidt, M. Fuchs, R. Jaenicke, R. Rudolph, F. X. Schmid, and T. Kiefhaber. 1991. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586-1591. 
    12. Guan, Y. X., H. X. Pan, Y. G. Gao, S. J. Yao, and M. G. Cho. 2005. Refolding and purification of recombinant human interferon-$\gamma$ expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127.     
    13. Archibald, J. M., J. M. Logsdon, and W. F. Doolittle. 1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Opin. Biotechnol. 9: 1053-1056. 
    14. Kawarabayasi, Y., Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83-101, 145-152. 
    15. Langer, T., G. Pfeifer, J. Martin, W. Baumeister, and F. U. Hartl. 1992. Chaperonin mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11: 4757-4765. 
    16. Yoshida, T., M. Yohda, T. Iida, T. Maruyama, H. Taguchi, K. Yazaki, et al. 1997. Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273: 635-645. 
    17. Lamark, T., M. Ingebrigtsen, C. Bjornstad, T. Melkko, T. Mollens, and E. Nielsen. 2001. Expression of active human C1 inhibitor serpin domain in Escherichia coli. Prot. Expr. Purif. 22: 349-359. 
    18. Choi, J. J., J. W. Park, H. K. Shim, S. C. Lee, M. S. Kwon, J. S. Yang, H. O. Hwang, and S. T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279.     
    19. Kwon, M. J., S. L. Rark, S. K. Kim, and S. W. Nam. 2002. Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005. 
    20. Waldmann, T., E. Nimmesgern, M. Nitsch, J. Peters, G. Pfeifer, S. Muller, et al. 1995. The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur. J. Biochem. 227: 848-856. 
    21. Wiech, H., J. Buchner, R. Zimmermann, and U. Jakob. 1992. Hsp90 chaperones protein folding in vitro. Nature 358: 169-170. 
    22. Zhi, W., P. Srere, and C. T. Evans. 1991. Conformational stability of pig citrate synthase and some active-site mutants. Biochemistry 30: 9281-9286. 
    23. Ditzel, L., J. Lowe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125-138. 
    24. Winter, J., K. Linke, A. Jatzek, and U. Jakob. 2005. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol. Cell. 17: 381-392. 
    25. Yan, Z., S. Fujiwara, K. Kohda, M. Takagi, and T. Imanaka. 1997. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785-789. 
    26. Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-580. 
    27. Knapp, S., I. Schhmidt-Krey, H. Hebert, T. Bergman, H. Jornvall, and R. Ladenstein. 1994. The molecular chaperonin TF55 from the thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. J. Mol. Biol. 242: 397-407. 
    28. Kim, H. and I. H. Kim. 2005. Refolding of fusion ferritin by gel filtration chromatography (GFC). Biotechnol. Bioprocess Eng. 10: 500-504.     
    29. Yoshida, T., R. Kawaguchi, H. Taguchi, M. Yoshida, T. Wakabayashi, M. Yohda, and T. Maruyama. 2002. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315: 73-85. 
    30. Gutsche, I., L. O. Essen, and W. Baumeister. 1999. Group II chaperonins: New TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312. 
    31. Zhi, W., S. J. Landry, L. M. Gierasch, and P. A. Srere. 1992. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Prot. Sci. 1: 522-529. 
    32. Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano. 2006. Stabilization of free and immobilized enzyme using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131-136. 
    33. Minuth, T., G. Frey, P. Lindner, R. Rachel, K. O. Stetter, and R. Jaenicke. 1998. Recombinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258: 837-845. 
    34. Hoffmann, J. H., K. Linke, P. C. Graf, H. Lilie, and U. Jakob. 2004. Identification of a redox-regulated chaperone network. EMBO J. 23: 160-168. 
    35. Son, H. J., E. J. Shin, S. W. Nam, D. E. Kim, and S. J. Jeon. 2006. Properties of the $\alpha$ subunit of a chaperonin from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. FEMS Microbiol. Lett. 266: 103-109. 
    36. Kwak, Y. H., S. J. Kim, K. Y. Lee, and H. B. Kim. 2000. Stress response of the Escherichia coli groE promoter. J. Microbiol. Biotechnol. 10: 63-68. 
    37. Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354: 490-493. 

 저자의 다른 논문


    1. 2005 "Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones" Journal of microbiology and biotechnology 15 (6): 1267~1272    
    2. 2006 "Effect of Molecular Chaperones on the Soluble Expression of Alginate Lyase in E. coli" Biotechnology and bioprocess engineering 11 (5): 414~419    
  • 김정환 (6)

  • Jeon, Sung-Jong (19)

  • 김연희 (27)

  • Nam, Soo-Wan (63)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역



유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기