본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.20 no.3, 2010년, pp.615 - 621   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$

Nevatalo, Laura M.    (Department of Chemistry and Bioengineering, Tampere University of Technology   ); Bijmans, Martijn F. M.    (Sub-Department of Environmental Technology, Wageningen University and Research Centre   ); Lens, Piet N. L.    (Sub-Department of Environmental Technology, Wageningen University and Research Centre   ); Kaksonen, Anna H.    (Department of Chemistry and Bioengineering, Tampere University of Technology   ); Puhakka, Jaakko A.    (Department of Chemistry and Bioengineering, Tampere University of Technology  );
  • 초록

    The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$ . Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$ , and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$ , respectively. In the GLB experiment at $9^{\circ}C$ , a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$ , corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$ , was obtained. The electron flow from the consumed $H_2$ -gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.


  • 주제어

    Sulfate reduction .   low temperature .   gas-lift bioreactor .   hydrogenotroph .   homoacetogenesis.  

  • 참고문헌 (25)

    1. Buisman, C. J. N., J. Huisman, H. Dijkman, and M. F. M. Bijmans. 2007. Trends in application of industrial sulfate reduction for sulfur and metal recycling, pp. 383-387. Proceedings of European Metallurgical Conference, 11-14 June 2007, Dusseldorf, Germany. 
    2. Franzmann, P. D., C. M. Haddad, R. B. Hawkes, W. J. Robertson, and J. J. Plumb. 2005. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of Ratkowsky equation. Miner. Eng. 18: 1304-1314. 
    3. Isaksen, M. F. and B. B. Jorgensen. 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microb. 62: 408-414. 
    4. Knoblauch, C. and B. B. Jorgensen. 1999. Effect of temperature on sulfate reduction, growth rate and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1: 457-467. 
    5. Nauhaus, K., M. Albrecht, M. Elvert, A. Boetius, and F. Widdel. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol 9: 187-196. 
    6. Kawazuishi, K. and J. M. Prausniz. 1987. Correlation of vapor-liquid equilibria for the system ammonia-carbon dioxide-water. Ind. Chem. Eng. Res. 26: 1482-1485. 
    7. van Houten, R. T., H. van der Spoel, A. C. van Aelst, L. W. Hulshoff Pol, and G. Lettinga. 1996. Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol. Bioeng. 50: 136-144. 
    8. Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarzin. 1996. Methanogenesis at low temperature by microflora of tundra wetland soil. Antonie Van Leeuwenheek 69: 75-86. 
    9. Sahinkaya, E., B. Ozkaya, A. H. Kaksonen, and J. A. Puhakka. 2007. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and ${65^{\circ}C}$ is limited by acetate oxidation. Water Res. 41: 2796-2714. 
    10. Bijmans, M. F. M., M. Dopson, F. Ennin, P. N. L. Lens, and C. J. N. Buisman. 2008. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J. Microbiol. Biotechnol. 18: 1809-1818.     
    11. Esener, A. A., J. A. Roels, and N. W. F. Kossen. 1983. Theory and applications of unstructured growth models: Kinetic and energetic aspects. Biotech. Bioeng. XXV: 2803-2841. 
    12. Weijma, J., F. Gubbels, L. W. Hulshoff Pol, A. J. M. Stams, P. N. L. Lens, and G. Lettinga. 2002. Competition for $H_{2}$ between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Technol. 45: 75-80. 
    13. Auvinen, H., L. M. Nevatalo, A. H. Kaksonen, and J. A. Puhakka. 2009. Low temperature (${9^{\circ}C}$) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic Desulfomicrobium species. Biotechnol. Bioeng. 104: 740-751. 
    14. Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113. 
    15. van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560. 
    16. SFS Finnish Standards Association. 1990. SFS 3008: Determination of total residue and total fixed residue in water, sludge and sediment. Helsinki, Finland Finnish Standards Association. 
    17. Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (${55^{\circ}C}$) hydrogenotrophic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotech. 64: 421-428. 
    18. Widdel, F. 1987. New types of acetate-oxidizing sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148: 286-291. 
    19. Kaksonen, A. H. and J. A. Puhakka. 2007. Review: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci. 7: 541-564. 
    20. Kaksonen, A. H., P. D. Franzmann, and J. A. Puhakka. 2004. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotech. Bioeng. 86: 332-343. 
    21. Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng. 67: 354-363. 
    22. van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594. 
    23. Esposito, G., J. Weijma, F. Pirozzi, and P. N. L. Lens. 2003. Effect of the sludge retention time on $H_{2}$ utilization in a sulfate reducing gas-lift reactor. Process Biochem. 39: 491-498. 
    24. Ratkowsky, D. A., R. K. Lowry, T. A. McMeekin, A. N. Stokes, and R. E. Chandler. 1983. Model of bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226. 
    25. Isaksen, M. F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfatereducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160-168. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기