본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Korea-Australia rheology journal v.22 no.1, 2010년, pp.1 - 10   SCIE 피인용횟수: 2
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Rheology as a powerful tool for industrial material development

Min, Kyung-Jip    (R&D Center, LG Hausys, Ltd.   ); Lee, Min-Hee    (R&D Center, LG Hausys, Ltd.   ); Son, Ji-Hyang    (R&D Center, LG Hausys, Ltd.   ); Lee, Jong-Hun    (R&D Center, LG Hausys, Ltd.  );
  • 초록

    Rheology is the science that deals with the way materials deform when forces are applied to them. There are two principal aspects of rheology. One involves the development of quantitative relationships between deformation and force for a material of interest. Another aspect the development of relationships that show how rheological behavior is influenced by the structure and composition of the material and the temperature and pressure. This concept of rheology is very useful and powerful tool in development of industrial materials, so it has wide application to R&D area of industrial company. In this work, it holds two examples which are applied in industrial material development. One is the investigation of the effect of dissolved supercritical carbon dioxide on the viscosity and morphological properties for PE/PS blends in a twin screw extruder, the other is the fabrication of PVDF hollow fiber membrane and elucidation of the membrane morphology as functions of dope and external coagulant rheology in the phase inversion process.


  • 주제어

    PE/PS blend .   supercritical carbon .   twin screw extruder .   PVDF hollow fiber .   phase inversion.  

  • 참고문헌 (48)

    1. Atchariyawut, S., C. Feng, R. Wang, R. Jiraratananon and D.T. Liang, 2006, Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers, J. Membrane Sci., 285, 272-281. 
    2. Beckman, E.J. and R.S. Porter, 1987, Crystallization of bisphenol a polycarbonate induced by supercritical carbon dioxide, J. Polym. Sci., Part B, 25, 1511-1517. 
    3. Cheng, L.P., T.H. Young, L. Fang and J.J. Gau, 1999, Formation of particulate microporous poly(vinylidene fluoride) membranes by isothermal immersion precipitation from the 1- octanol/dimethylformamide/poly(vinylidene fluoride) system, Polymer, 40, 2395-2403. 
    4. Chung, T.S., W.H. Lin and R.H. Vora, 2000, The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers, J. Membrane Sci., 167, 55-66. 
    5. Chung, T.S., J.J. Qin and J. Gu, 2000, Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersolfone hollow fiber membranes, Chem. Eng. Sci., 55, 1077-1091. 
    6. Dohany, J.E. and L.E. Robb, 1980, Polyvinylidene fluoride, in: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 11, 3rd ed., Wiley, New York, NY. 
    7. Ekiner, O.M. and G. Vassilatos, 2001, Polyaramide hollow fibers for H2/CH4 separation II. Spinning and properties, J. Membrane Sci., 186, 71-84. 
    8. Guell, C and R.H. Davis, 1996, Membrane fouling during microfiltration of protein mixtures, J. Membrane Sci., 119, 269-284. 
    9. Han, C.D and C.A. Villamizar, 1978, Studies on structural foam processing I. the rheology of foam extrusion, Polym. Eng. Sci., 18, 687698. 
    10. Han, C.D and C.-Y. Ma, 1983, Rheological properties of mixtures of molten polymer and fluorocarbon blowing agent I. Mixturess of low-density polyethylene and fluorocarbon blowing agend, J. Appl. Polym. Sci., 28, 831-850. 
    11. Jian, K. and P.N. Pintauro, 1997, Asymmetric PVDF hollowfiber membranes for organic/water pervaporation separations, J. Membrane Sci., 135, 41-53. 
    12. Mendelson, R.A., 1980, Concentrated solution viscosity behavior at elevated temperatures ? polystyrene in ethylbenzene, J. Rheol., 24, 765-781. 
    13. Park, C.B. and N.P. Suh, 1996, Filamentary extrusion of microcellular polymers using a rapid decompressive element, Polym. Eng. Sci., 36, 34-48. 
    14. Peng, N., T.S. Chung and K.Y. Wang, 2008, Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes, J. Membrane Sci., 318, 363-372. 
    15. Schneider, K. and T.S. Van Gassel, 1984, Membrane distillation, Chem. Eng. Technol., 56, 514-521. 
    16. Wang, K.Y., T.S. Chung and M. Gryta, 2008, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chem. Eng. Sci., 63, 2587-2594. 
    17. Wissinger, R.G. and M.E. Paulaitis, 1987, Swelling and sorption n polymer-CO2 mixture at elevated pressures, J. Polym. Sci., Part B, 25, 2497-2510. 
    18. Lovinger, A.J., 1982, in: D.C. Bassett (Ed.), Poly(vinylidene fluoride), Development in Crystalline Polymers, vol. 1, Applied Science, London, 1982. 
    19. Doolittle, A.K., 1951, Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space, J. Appl. Phys., 22, 1471-1475. 
    20. Peng, N., T.S. Chung and J.Y. Lai, 2009, The rheology of Torlon solutions and its role in the formation of ultra-thin defect-free Torlon hollow fiber membranes for gas separation, J. Membrane Sci., 326, 608-617. 
    21. Mendelson, R.A., 1979, A method for viscosity measurements of concentrated polymer solutions in volatile solvents at elevated temperatures , J. Rheol., 23, 545-556. 
    22. Bonyadi, S. and T.S. Chung, 2007, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilichydrophobic hollow fiber membranes, J. Membrane Sci., 306, 134-146. 
    23. Castro, A.J., 1981, Method for making microporous products, US Patent 4247498. 
    24. Widjojo, N. and T.S. Chung, 2006, Thickness and air gap dependence of macrovoid evolution in phase-inversion asymmetric hollow fiber membranes, Ind. Eng. Chem. Res., 45, 7618-7626. 
    25. Kelly, F.N. and F. Bueche, 1961, Viscosity and glass temperature relations for polymer-diluent systems, J. Polym. Sci., 50, 549-556. 
    26. Li, K, J.F. Kong, D. Wang and W.K. Teo, 1999, Tailor-made asymmetric PVDF hollow fibers for soluble gas removal, AIChE. J., 45, 1211-1219. 
    27. Lloyd, D.R., K.E. Kinzer and H.S. Tseng, 1990, Microporous membrane formation via thermally induced phase separation. I. solid-liquid phase separation, J. Membrane Sci., 52, 239-261. 
    28. Park, C.B, D.F. Baldwin and N.P. Suh, 1995, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers, Polym. Eng. Sci., 35, 432-440. 
    29. Wang, K.Y, T. Matsuura, T.S. Chung and W.F. Guo, 2004, The effects of flow angle and shear rate within the spinneret on the separation performance of poly(ethersulfone) (PES) ultrafiltration hollow fiber membranes, J. Membrane Sci., 240, 67-79. 
    30. Bigg, D.M., J.R. Preston and D. Brenner, 1976, An experimental technique for predicting foam processability and physical properties, Polym. Eng. Sci., 16, 706-711. 
    31. Bird, R.B., R.C. Armstrong and O. Hassager, 1987, Dynamics of Polymeric Liquids, Vol. 1, John Wiley & Sons, New York. 
    32. Ekiner, O.M and G. Vassilatos, 1990, Polyaramide hollow fibers for hydrogen/methane separation spinning and properties, J. Membrane Sci., 53, 259-273. 
    33. Cao, C., T.S. Chung, S.B. Chen and Z. Dong, 2004, The study of elongation and shear rates in spinning process and its effect on gas separation performance of Poly(ether sulfone) (PES) hollow fiber membranes, Chem. Eng. Sci., 59, 1053-1062. 
    34. Lonsdale, H.K, 1982, The growth of membrane technology, J. Membrane Sci., 10, 81-181. 
    35. Throne, J.L, 1996, Thermoplastic Foams, Sherwood Publishers, Hinckley, Ohio. 
    36. Peng, N. and T.S. Chung, 2008, The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon hollow fiber membranes, J. Membrane Sci., 310, 455-465. 
    37. Wang, D, 1995, Polyethersulfone hollow fiber gas separation membranes prepared from solvent systems containing non-solvent- additives, Ph.D. Thesis, Department of Chemical Engineering, National University of Singapore. 
    38. Baldwin, D.F., C.B. Park and N.P. Suh, 1996, An extrusion system for the processing of microcellular polymer sheets: Shaping and cell growth control, Polym. Eng. Sci., 36, 1425-1435. 
    39. Clausi, D.T. and W.J. Koros, 2000, Formation of defect-free polyimide hollow fiber membranes for gas separations, J. Membrane. Sci., 167, 79-89. 
    40. Oyanagi, Y. and J.L. White, 1979, Basic study of extrusion of polyethylene and polystyrene foams, J. Appl. Polym. Sci., 23, 1013-1026. 
    41. Blyler Jr., L.L. and T.K. Kwei, 1971, J. Polym. Sci., Part C, 35, 165. 
    42. Chung, T.S., S.K. Teo, W.W.Y. Lau and M.P. Srinivasan, 1998, Effect of shear stress within the spinneret on hollow fiber membrane morphology and separation performance, Ind. Eng. Chem. Res., 37, 3930-3938. 
    43. Rauwendaal, C.R, 1990, Polymer Extrusion, Hanser Publishers, Munich. 
    44. Young, T.H, D.J. Lin, J.J Gau, W.Y. Chuang and L.P. Cheng, 1999, Morphology of crystalline Nylon-6,10 membranes prepared by the immersion-precipitation process: Competition between crystallization and liquid-liquid phase separation, Polymer, 40, 5011-5021. 
    45. Park, C.B, D.F. Baldwin and N.P. Suh, 1994, in Cellular and Microcellular Materials, MD-Vol. 53. p. 85, V. Kumar and K.A. Sealer, eds., ASME, New York. 
    46. Khayet, M., C.Y. Feng and K.C. Khulbe, T. Matsuura, 2002, Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration, Polymer, 43, 3879-3890. 
    47. Mulder, M., 1992, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht, The Netherlands. 
    48. Ren, J., R. Wang, H.Y. Zhang, Z. Li, D.T. Liang and J.H. Tay, 2006, Effect of PVDF dope rheology on the structure of hollow fiber membranes used for $CO_2$ capture, J. Membrane Sci., 281, 334-344. 
  • 이 논문을 인용한 문헌 (2)

    1. 2012. "" Korea-Australia rheology journal, 24(3): 211~219     
    2. Jang, Woojin ; Hong, Seung-Chul ; Hong, Jung-Pyo ; Hwang, Taeseon ; Oh, Joon-Suk ; Ko, Sungyeon ; Lee, Gaeun ; Ahn, Kyunyoung ; Kim, Hyunsoo ; Suhr, Jonghwan ; Nam, Jae-Do 2013. "Performance Characteristics of Li-ion Battery and Supercapacitor Hybrid Cell for High Power / Low Temperature Discharge" 한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineers, 21(6): 49~57     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기