본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.15 no.3, 2010년, pp.520 - 526   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Anaerobic Digestion and In situ Electrohydrolysis of Dairy Bio-sludge

Vijayaraghavan, Krishnan    (Department of Biotechnology, Biotechnology Research Division, Prathyusha Institute of Technology & Management   ); Sagar, G.K.    (Department of Biotechnology, Biotechnology Research Division, Prathyusha Institute of Technology & Management  );
  • 초록

    A novel treatment method based on anaerobic digestion and in-situ electrohydrolysis of dairy bio-sludge was investigated in this article. The electrohydrolysis was carried out inside the anaerobic reactor using graphite anode and stainless steel cathode. The electrons released by the graphite anode combines with the proton released due to electrohydrolysis of fatty acids which resulted in the formation of hydrogen gas. The experiments were conducted using a DC power source under continuous and intermittent mode of input voltage ranging from 0.5 to 2.5 V for varying influent volatile solids concentration at a pH 5.3 ${\pm}$ 0.2. The results favored intermittent mode of input voltage rather than continuous supply. For an influent total solid concentration of 7% (64,120 mg/L VS), intermittent input voltage of 2 V, and a hydraulic retention time of 15 days resulted in a volatile solids and soluble COD removal efficiency of 83 and 74%, while the cumulative gas generation was 1,051 L with a hydrogen content of 72%.


  • 주제어

    anaerobic digestion .   electrohydrolysis .   hydrogen .   bio-sludge .   dairy .   biomass.  

  • 참고문헌 (43)

    1. Energy Information Administration (2009) International Energy Outlook 2009. EIA, Office of Integrated Analysis and Forecasting, U.S. Department of Energy, Washington DC, USA. 
    2. Liu, H., S. Grot, and B. E. Logan (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39: 4317-4320. 
    3. Rozendal, R. A., H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, and C. J. N. Buisman (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrog. Ener. 31: 1632-1640. 
    4. Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete (2005) Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 39: 8077-8082. 
    5. Rabaey, K., W. Ossieur, M. Verhaege, and W. Verstraete (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci. Technol. 52: 515-523. 
    6. He, Z. and L. T. Angenent (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18: 2009-2015. 
    7. Rhoads, A., H. Beyenal, and Z. Lewandowski (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39: 4666-4671. 
    8. Heijne, A. T., H. V. M. Hamelers, and C. J. N. Buisman (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol. 41: 4130-4134. 
    9. Morozov, S. V., P. M. Vignais, V. L. Cournac, N. A. Zorin, E. E. Karyakina, A. A. Karyakin, and S. Cosnier (2002) Bioelectrocatalytic hydrogen production by hydrogenase electrodes. Int. J. Hydrog. Ener. 27: 1501-1505. 
    10. Pershad, H. R., J. L. Duff, H. A. Heering, E. C. Duin, S. P. Albracht, and F. A. Armstrong (1999) Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: Application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible $H^{+}/H_{2}$ value. Biochemistry 38: 8992-8999. 
    11. Lojou, E. and P. Bianco (2004) Electrocatalytic reactions at hydrogenase-modified electrodes and their applications to biosensors: From the isolated enzymes to the whole cells. Electroanalysis 16: 1093-1100. 
    12. HACH (1997) Wastewater analysis user manual. HACH company, Loveland, CO, USA. 
    13. American Public Health Association (APHA) (1985) Standard Methods for the examination of water and wastewater. APHA, Washington DC, USA. 
    14. Drager (2004) Biogas analyzing test kit user manual. Drager Sicherheitstechnik GmbH, Lubeck, Germany. 
    15. Vijayaraghavan, K., A. Desa, I. Mohd Khairil, and B. H. Haryati (2006) Isolation of hydrogen generating microflora from cow dung for seeding anaerobic digester. Int. J. Hydrog. Ener. 31: 708-720. 
    16. Lay, J. J. (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269-278. 
    17. Oh, S. E., S. Van Ginkel, and B. E. Logan (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 37: 5186-5190. 
    18. Cohen, A., B. Distel, A. van Deursen, A. M. Breure, and J. G. van Andel (1985) Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: Changes induced by discontinuous or low-rate feed supply. A van Leeuw J. Microbiol. 51: 179-192. 
    19. Van Ginkel, S. W., S. E. Oh, and B. E. Logan (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrog. Ener. 30: 1535-1542. 
    20. Mu, Y., X. J. Zheng, H. Q. Yu, and R. F. Zhu (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int. J. Hydrog. Ener. 31: 780-785. 
    21. Chang, J. S., K. S. Lee, and P. J. Lin (2002) Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrog. Ener. 27: 1167-1174. 
    22. Lin, C. Y. and C. H. Cheng (2006) Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int. J. Hydrog. Ener. 31: 832-840. 
    23. Vijayaraghavan, K., A. Desa, and I. Mohd Khairil (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int. J. Hydrog. Ener. 31: 569-579. 
    24. Lay, J. J., K. S. Fan, J. Chang, and C. H. Ku (2004) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrog. Ener. 28: 1361-1367. 
    25. Horiuchi, J. I., T. Shimizu, K. Tada, T. Kanno, and M. Kobayashi (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82: 209-213. 
    26. Chen, C. C., C. Y. Lin, and J. S. Chang (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 57: 56-64. 
    27. Lin, C. Y. and C. H. Lay (2004) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrog. Ener. 29: 275-281. 
    28. Lin, C. Y. and R. C. Chang (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74: 498-500. 
    29. Lay, J. J. (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269-278. 
    30. Liu, G. and J. Shen (2004) Effect of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J. Biosci. Bioeng. 98: 251-256. 
    31. Lee, Y. J., T. Miyahara, and T. Noike (2002) Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol 77: 694-698. 
    32. Khanal, S. K., W. H. Chen, L. Li, and S. Sung (2004) Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrog. Ener. 29: 1123-1131. 
    33. Byung, H. K. and J. G. Zeikus (1997) Importance of hydrogen metabolism in regulation of solventogenesis by Clostridium acetobutylicum continuous culture system of hydrogen producing anaerobic bacteria. Proceedings of the eighth international conference on anaerobic digestion. May 25-29. Sendai, Japan. 
    34. Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey (2006) Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192. 
    35. Bergel, A., D. Feron, and A. Mollica (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun. 7: 900-904. 
    36. Lojou, E., M. C. Durand, A. Dolla, and P. Bianco (2002) Hydrogenase activity control at Desulfovibrio vulgaris cellcoated carbon electrodes: Biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14: 913-922. 
    37. Chang, F. Y. and C. Y. Lin (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int. J. Hydrog. Ener. 29: 33-39. 
    38. Lin, C. Y. and C. H. Lay (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrog. Ener. 30: 285-92. 
    39. Vijayaraghavan, K. and A. Desa (2006) Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int. J. Hydrog. Ener. 31: 1284-1291. 
    40. Ueno, Y., T. Kawai, S. Sato, S. Otsuka, and M. Morimoto (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng. 79: 395-397. 
    41. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy (2002) Sustainable fermentative biohydrogen: Challenges for process optimization. Int. J. Hydrog. Ener. 27: 1339-1347. 
    42. Tatsumi, H., K. Takagi, M. Fujita, K. Kano, and T. Ikeda (1999) Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Anal. Chem. 71: 1753-1759. 
    43. Zoetemeyer, R. J., P. Arnoldy, A. Cohen, and C. Boelhouwer (1982) Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Water Res. 16: 313-321. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기