본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국환경농학회지 = Korean journal of environmental agriculture v.29 no.2, 2010년, pp.115 - 119   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

아연 스트레스를 받는 식물의 성장을 위한 생분해되는 킬레이트로서 에틸렌디아민
Ethylenediamine as a Promising and Biodegradable Chelating Agent in Growth of Plant Under Zinc Stress

이상만    (경북대학교 응용생명과학부  );
  • 초록

    Zinc (Zn) is an essential element required for growth and development of plants. However, Zn can be toxic to plants when it presents excessive amount. Phytoextraction is an economic and environment-friendly technique using plants to clean-up metal-contaminated soils. However, the technique cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metalcontaminated areas. Zn as a target metal and cysteine (Cys), histidine (His), malate, citrate oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Plants were grown on agar media containing various chelating agents with Zn to analyze the effect on plant growth. Malate and His slightly increased the inhibitory effect of Zn on root growth of plants, whereas Cys, citrate, oxalate, and succinate did not show significant effects. However, EDA strongly diminished the inhibitory effect of Zn on root growth. The effect of EDA is correlated with decreased Zn uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for growth of plants in highly Zn-contaminated areas.


  • 주제어

    Chelate .   Heavy metal .   Phytoextraction .   Phytoremediation .   Zinc.  

  • 참고문헌 (17)

    1. Barber, S.A., 1995. Soil nutrient bioavailability, 2nd (ed.) New York, NY, USA: John Wiley & Sons, Inc. 
    2. Blaylock, M.J., 2000. Field demonstration of phytoremediation of lead contaminated soils, In: Terry, N., Banuelos, G., (ed.) Phytoremediation of contaminated soil and water, Lewis Publ., Boca Raton, FL, pp. 1-12. 
    3. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., Lux, A., 2007. Zinc in plants. New Phytologist 173, 677-702. 
    4. Chaney, R.L., 1993. Zinc phytotoxicity. In: Robson AD, ed. Zinc in soil and plants. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 135-150. 
    5. Cobbett, C.S., 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification, Cur. Opin. Plant Biol. 3, 211-216. 
    6. Dushenkov, S., Kapulnik, Y., 2000. Phytofiltration of metals, In: Phytoremediation of Toxic Metals. Raskin, I., Enseley, B.D., eds. John Wiley, New York. pp. 89-106. 
    7. Hell, J.L. , 2002. Cellular mechanism for heavy metal detoxification and tolerance, J. Exp. Bot. 53, 1-11. 
    8. Huebert, D.B., Shay, J.M., 1992. The effect of EDTA on cadmium and zinc uptake and toxicity in Lemna trisulca L, Arch. Environ. Contam. Toxicol. 22, 313-318. 
    9. Kerkeb, L., Kramer, U., 2003. The role of free histidine in xylem loading of nickel in Asylum lesbiacum and Brassica juncea, Plant Physiol. 131, 716-724. 
    10. Marschner, H., 1995. Mineral nutrition of higher plants, 2nd (ed.) London, UK: Academic Press. 
    11. Mench, M., Morel, J.L., Guckert, A., Gruillet, B., 1988. Metal binding with root exudates of low molecular weight, J. Soil Sci. 39, 521-527. 
    12. Raskin, I., Ensley, B.D., 2000. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, John Wiley, New York. 
    13. Rauser, W.E., 1990. Phytochelatins, Annu. Rev. Biochem. 59, 61-86. 
    14. Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643?668. 
    15. Stillman, M.J., Shaw, C.F., Suzuki, K.T., 1992. metallothioneins, synthesis, structure and properties of metallothioneins, phytochelatins and metal-thiolate complexes, VCH, New York. 
    16. Tandy, S., Schulin, R., Nowack, B., 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers, Chemosphere 62, 1454-1463 
    17. Wu, J., Hsu, F.C., Cunningham, S.D., 1999. Chelateassisted Pb phytoextraction: Pb availability, uptake, and translocation constraints, Environ. Sci. Technol. 33, 1898-1904. 
  • 이 논문을 인용한 문헌 (1)

    1. Hyeon, Hye-Hyeon ; Hyun, Mi-Ho ; Lee, Dong-Kyu 2016. "Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives" 한국유화학회지 = Journal of oil & applied science, 33(1): 23~29     

 저자의 다른 논문

  • Lee, Sang-Man (10)

    1. 2009 "분열효모 SpHMT1을 세포질 파이토킬레이트를 생성하지 않는 효모에서 발현으로 인한 카드뮴에 대한 저항성 증가" 생명과학회지 = Journal of life science 19 (12): 1685~1689    
    2. 2010 "생분해 되는 다양한 킬레이트가 구리에 노출된 식물의 뿌리성장에 미치는 영향" 생명과학회지 = Journal of life science 20 (1): 17~21    
    3. 2010 "Heterologous Expression of Fission Yeast Heavy Metal Tolerance Factor 1, SpHMT1, Confers Increased Sensitivity to Copper in Budding Yeast" Journal of the Korean Society for Applied Biological Chemistry 53 (5): 647~651    
    4. 2010 "생분해되는 다양한 킬레이트들이 납에 노출된 식물의 성장에 미치는 영향" 한국환경농학회지 = Korean journal of environmental agriculture 29 (1): 61~65    
    5. 2010 "알루미늄 식물학적정화에 사용 가능하고 생분해 되는 킬레이트로 후보로서의 ethylenediamine" 생명과학회지 = Journal of life science 20 (7): 1041~1046    
    6. 2011 "Cadmium Tolerance Increased Synergistically by Heterologous Co-expression of SpHMT1 and AtPCS1 in Budding Yeast" Journal of the Korean Society for Applied Biological Chemistry 54 (5): 802~805    
    7. 2014 "생분해되는 다양한 킬레이트들이 수은에 노출된 식물의 뿌리성장에 미치는 영향" Current research on agriculture and life sciences = 경북대농학지 32 (3): 155~158    
    8. 2017 "아연 저항성 갖는 인위적으로 유도된 효모 돌연변이체의 특성" Journal of applied biological chemistry 60 (2): 113~117    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기